21 February 2025

Maximum Bipantite Matchile

Plan

* Max Bipartite Matching

* Announcements

* Reduction to Flow,

Maximum Bipartite Matching
aiven. Bipartite Graph on vertices UVV.
Every edge in E has exactly
1 endpoint in U and V.
Find. Maximum Cardinality Matching MCE
Collection of edges s.t. every vertex is in at most one edge

Network Flow Problem

airen. Directed graph $A = A \left(A \vee_{i} = A \right) A$

Source vertex S Sink vertex t

Edge capacities ce 20 He E E

Network Flow Problem * Given Flow Network G, s,t, c: E -> R+ * Find Flow f: E -> Rt subject to Capacity Constraints Here E. . Conservation Constraints HUEV ZSItS Flow In LUVEE IN THE TWO

Max Flow. Find Flow fx that maximizes FlowOut (s)

Announcements

* Grading Ongoing

Ly Prelim 1

har HWZ

* No Recitation this Saturday.

Maximum Bipartite Matching
aiven. Bipartite Graph on vertices UVV.
Every edge in E has exactly
1 endpoint in U and V.
Find. Maximum Cardinality Matching MCE
Collection of edges s.t. every vertex is in at most one edge

Reducing Max Bipartite Matching to Max Flow * Reduction is an algorithm R. Bipartite Matchily instances Max Flow instances Flow Network R(B) = (q,s,t,c) Eipartite Graph B=(u,v,E)

3

K(B)

Reducing Mo	x Bipartite Matchin	9 to Max Flow
	is an algorithm	
Bipartite Matchi	instances	Max Flow instance
· · · · · · · · · · · · · · · · · · ·		
Conclusion	If we can solve M	Max Flow, then ax Bijartite Matching.
	Bipantite Matching	MaxFlow

Reducing Max Bipartite Matching to Max Flow * Reduction is an algorithm R. Bipartite Matchila instances Max Flow instances * Requirements. Max Matchines in B Max Flow in R(B) i=k

Reducing Max Bipartite Matching to Max Flow
* Reduction is an algorithm R.
Bipartife Matching instances Max Flow instances
B
* Requirements.
(⇒) If B has a matching M s.t. [M] ≥ k then max flow in R(B) is at least k

Reducing Max Bipartite Matching to Max Flow
* Reduction is an algorithm R.
Bipartite Matchily instances Max Flow instances
B B
* Requirements.
(⇒) If B has a matching M s.t. [M] ≥ h then max flow in R(B) is at least k.
(=) If R(B) has max flow at least k, then B has a matching M s.t. M ≥ k.

Reduction

On input B = (U, V, E)

Construct G on vertices UUVuzsitg

B

Reduction

On input $^{\prime}$ $^{\prime}$

Construct G on vertices UUVuzsitg

For every (u,v) EE, add directed edge to G w/ capacity Cov=1.

Reduction

On input B = (U, V, E)

Construct G on vertices UUVuzsitg

For every (u,v) EE, add directed edge to G w/ capacity Cuv = 1.

For every uell, add (s,u) to G w/ cap csu=1

Reduction On input B = (U, V, E) Construct G on vertices UUVuzsitg For every (u,v) EE, add directed edge to G capacity Cur = 1. For every uell, add (s,u) to G w/ cap csu= -> For every veV, add (v,t) to G W cap Cut = 1 ${}^{1}R^{1}({}^{1}B^{1})$

Max Bipartite Match Algo

On input B = (U, V, E)

Run Reduction to Max Flow R(B)

Compute k Max Flow (R(B))

Return k. // Returns cardinality of Max Matching in B.

Max Bipartite Match Algo.
On input B= (u, v, E)
Run Reduction to Max Flow R(B)
Compite (R(B))
Return K. // Returns cardinality of Max Matching in B.
Running Time of Reduction -> O(U + V + E)
Time to Solve Max Flow
$\frac{1}{2} M = \left(O(n), O(m+n) \right)$

edajes

Modes

Proof of Correctness.

* Need to show

Max Matching
in B

Max Flow in R (B)

* What can we leverage?

Proof of Correctness. * Need to show Max Matching
in B Max + Flow R(B)* What can we leverage? > tuell in at most one pair Defin of matching LP Flow constraints He E E CAPAC ITY 1 0≤ fe ≤ Ce CONSERVATION -> Flow In (v) = Flow Out (v) +VEV

La Properties of Reduction R

FORWARD DIRECTION

To show.

(⇒) If B has a matching M s.t. |M| ≥ k, then max flow in R(B) Z le. Consider vouting 1 unit of flow along each matched redge (u,v) e M For all (u,v) & M For all other edges

(⇒) If B has a matching M s.t. |M| ≥ k, then max flow in R(B) Z le. Consider vouting 1 unit of flow along each matched edge (u,v) E M For all (u,v) & M for = for = for = For all other edges Claim 1 = Flow Ont (s) = IMI Claim 2. fis a feasible flow.

Claim 1. Flow Out (s) = |M| By defn of matching, every use involved in at most 1 matched edge

Claim 2. Fis a feasible flow

* CAPACITY CONSTRAINTS

* CONSERVATION CONSTRAINTS

Claim 2. of is a feasible flow * CAPACITY CONSTRAINTS By defn. of matching, uell and vel involved in at most 1 matched edge => Huell = Csy => Capacity constraints on S-w and v-E OK * only 1 mit routed on fur sil work of

Claim 2. Fis a feasible flow

- * CAPACITY CONSTRAINTS
- * CONSERVATION CONSTRAINTS

* For every matched (u,v) EM

exactly 1 mit in fout of u. 2 v

Consider vonting 1 unit of flow along each matched edge (u,v) ∈ M

Claim 1. Flow Ont(s) = IMI

Claim 2. f is a feasible flow.

(⇒) If B has a matching M s.t. |M| ≥ k, then max flow in R(B) ≥ k.

BACKWARD DIRECTION

To show.

(E) If max flow in R(B) Z le, then max matching in B Z le

(E) If max flow in R(B) Z le, then max matching in B = le. Fact. If all capacities are integer, I a max flow s.t feel Heeg Consider such an integral max flow f. By capacities > fe EZO15 HeEG

(€) If max flow in R(B) Z le, then max matching in B = le. Fact. If all capacities are integer, I a max flow s.t. feel Hee G Consider such an integral max flow f. By capacities > fe EZONG HeEG Let M = Z((u,v): ueU; veV and for = 1 3 We prove M is a matching [M] = Flow Out(s)

· let · M = 7 (u,v) · : ue U, ve V · and · fui = 1 · G · · · Claim. Mis a matching Pf. By construction in Reduction R * every us U has exactly one in-edge of cap con=1 * every VE V has exactly one out-edge of cap Cvt=1

Let $M = \frac{7}{2}(u,v)$: $u \in U$, $v \in V$ and $f_{uv} = 1\frac{7}{3}$ Claim. M is a matching.

Pf. By construction in Reduction R** every $u \in U$ has exactly one in-edge of cap $C_{su} = 1$ ** every $v \in V$ has exactly one out-edge of cap $C_{vt} = 1$

By conservation constraints.

⇒ At most 1 unit of flow out of every NEU

⇒ At most 1 unit of flow into every NEV.

let M = { (u,v) : ue U, ve V and for = 1 . F. Claim. Mis a matching Pf. By construction in Reduction R * every ue U has exactly one in-edge of cap csu=1 * every VE V has exactly one out-edge of cap Cvt=1 By conservation constraints. At most 1 unit of flow out of every NEW At most 1 unit of flow into every VEV. => Every nell and veV involved in at most one edge in My Let M = 7 (u,v): ue U, ve V and for = 1.3

Claim. [M] = Flow Out (s)

Pf Consider the cut in G, S= 755 UU

Let
$$M = \frac{7}{2}(u,v)$$
: $u \in U$, $v \in V$ and $f_{nv} = 1$ $\frac{7}{3}$.

Claim. $|M| = Flow Out(s)$

Pf Consider the cut in G, S= 755 UU

Note. No edges are oriented into S

= Flow from LEW to VEV.

Let M = { (u,v) : u ∈ U, v ∈ V and fiv = 1 . } Claim. [M] = Flow Out (s) Pf Consider the cut in G, S= Zs & UU Note. No edges are oriented into S => Flow Out(s) = Flow out of S = Flow from uEU to VEV By integrality of $f_e \in \{0,1\} \implies \geq k$ edges have non-zero flow from U to V. => (M)= Flow Out (s)

Next Question

Can we actually solve Max Flow?