7 Feb 2025 Shortest Paths and Bellman-Ford (Guest lecture: Bobby Kleinberg) In an unweighted graph, shortest set path is found by BFS (breadth-First search) in O(intr) time. Hedges Huetices If edges have costs c(u,u) >0 and we're searching for s-t path on <u>Minimum</u> total cost, we can use Dijkstra's Algorithm in O(mlogn) time. $\frac{2}{5}$ Today's algorithm (Bellman-Fard) finds a min-cost s-t path in graphs that may have positive and negative edge costs. (BUT NO NEGATIVE COST CYCLES) exchange Currency \$ 150

For edge u, v Say r(u, v) denotes # of v units needed to buy one unit of V. Problem. What's the minimum # of 5 units to obtain I unit of t through a sequence of exchanges? $S = U_0 \longrightarrow U_1 \longrightarrow U_2 \longrightarrow \dots \longrightarrow U_k = t$ To get 1 with of t you need to start with $\Gamma(u_0,u_1) \cdot \Gamma(u_1,u_2) \cdot \cdots \cdot \Gamma(u_{k-1},u_k)$ units of S. Goal is to find a part that minimizes this product. Equivalently, minimize define to be $\sum_{i=1}^{k} \log(r(u_{i_1}, u_i)) \in C(u_{i-1}, u_i)$ WIS : Recall (a)

	• •	•	•	• •	• •	•	•	•			())	· · ·					ナ	•	•	(4	シ	· · ·	•	ť	6).	•		3)	•	•	•	•	•	•	•	•	• •	• •	•
•	••••	•	•		• •						•																												•	• •	• •	•
•	••••	•	•	• •	· ·	<u>}</u>	י י אפר- ו	D	•	•	· //		•	•	se Se	<i>.</i> }	•		θ		•	• •	р ¢		12	أ£Q	•	•		2N	•	-a.	t	4 C	LV	nt		•	•	• •	• •	•
•	• •	•	•	• •	• •	ľ¥	᠂ᡨ	le	5,	*	• •	1	th.	at	· .	•	·γ	Ne	ay '	, shi	∕`≀	Z 	ėЗ	•	•	51	Nr	X	•	of i	•	0	16	els	5 [°] .	•	•	•	•	• •	• •	•
•	••••	•	•	• •	• •	•		•	•			• •	•	•	•	•	•		•		•		•	•			•	•		•			•		•	•		e e		• •	•	•
e e	• •	÷	•	• •	• •	•	•	•		•	• •	• •		•	•	•	•	•		•	•	• •	•	•	•		•	•	• •	•	•	•	•	•	•	•	•	0		• •	•	•
•	••••	•	•	• •	• •	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	• •	• •	•
٠	• •	٠	٠	• •	• •	٠	÷	0	÷	÷	• •		•		0	٠	٠	0		÷	0	• •	*	٠	٠	Ð	٠	٠		٠	٠	٠	0	٠	0	٠	٠	٠	÷	• •	• ·	٠
•	• •	•	•				•	•	•	•	• •			•	•	•	•	•	•	•			•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•		•	•

 $\begin{array}{c} (3) \\) \\) \\ -2 \end{array} \begin{array}{c} (3) \\ (3)$ Black and red edges have zero casti Paths in this directed graph and independent sets in the original problem are in bijective correspondence. Under this bijection - cost (porth) weight (ind set) = In other words we have described a reduction from WIS to Shartest path. s a transfer a tr To solve shortest path from we generalize the public to Vertex V, V hop-count h find min-cost potter from s to V composed of 'h us times edges.

If h=0, the only V reachable From 5 in h or ferrer Lops is s itset, If h>0, a path of h or feur hops from s to V is either: (a) a parth of h-1 or ferrer Lops from s to V, or (b) a path of 5h-1 hops From's to U (followed Ly an edge (4,1). $MIN-COST(s,v,h) = \min \left(MIN-(OST(s,v,h-1)) \right)$ $\begin{cases} min & MIN-COST(s,u,h-1) \\ e=(u,v) & + cost(u,v) \end{cases}$ (\mathbf{R}) のこうがそうちょう $MIN - COST(S, v, \varphi) = d \infty$ RUNS IN $h = 0, 1, Z, \dots = -$ O(mn) time Jor VEV MNCOST (S, V, h) using (J) ip h=0 fill f = h > 0using (R) output MIN-COSP (3, t, n-1)

. .