
20252January Greedy Algorithms :

-

Exchange Arguments

Plan

* MST

* Announcements

* Exchange Arguments
↳ The Cycle Lemma
↳ the Cut Luma

* Implementing Kruskal.



MinimumSpanning Tree
connected

&

Given A undirected
,
graph G = (V ,

E
, W)

weighted

End a minimumanning tree F (V, E' = E)
-

L ↓ ↓
minimize Fu

,
veV, graph with

sum of
u and v no cycles

edge weights. connected
in T

w
+
= 2 we

2tT



EMSTAlgs .

On input G = (VE, W)

Step 0 .

Sort edges by weight 3 Greedypriority.
We We . -- Wem

AddMin PalateMax

T= (V
, (5) T = (v , E)

For i = 1 -> m
. For i = m ->

1
.

if Tv[e] if T14e3
does not form a cycle

is still connected

Add ei to
T

. I
RemoveIn fromT

ReturnT . Return T.



The Cycle G = (VIE , W) w/ distinct edge weights .temma.

Suppose C is a cycle within G and

let Emax be the edge in C of

maximum weight.
Then,

&max is NOT in the MST of G.

Cmax

·
0

↓
Collary . DeleteMax returns the MST of G.



The rem .

DeleteMax returns the MST.

Pof Steps

O Show that Delete Max returns a spanning tree.

(Good practice exercise
.)

~② Assuming Cycle Lama,
Show that Delete Max returns MST

(Last time

③ Prove Cycle humma

↳ this lecture.



ExchangeArgument . -9

Goal Show &
max

cannot be &
-

M

in min spanning tree
.

L largest
wt . in

cycle



ExchangeArgument . -9

Goal Show &
max

cannot be &
-

M

in min spanning tree
.

L largest
wt . in

cycle

Idea
,

StartwI some spanning tree T
-

containing Cmax

* "Exchange" emax for some other edge

such that

↳ Weight goes down

3↳ Now structure still => TisV
a spanning tree.



Announcements
--

* HWQ due Tues

↳ Optional ,
but highly Recommended !

* OH Schedule is live .



ExchangeArgument . -9

Goal Show &
max

cannot be &
-

M

in min spanning tree
.

L largest
wt . in

cycle

Idea
,

StartwI some spanning tree T
-

containing Cmax

* "Exchange" emax for some other edge

such that

↳ Weight goes down

3↳ Now structure still => TisV
a spanning tree.



P
. By exchange argument .

Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free

I
U

two o
-

&O
&O

I

j /o!



P
. By exchange argument .

Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free

Consider removing emax fromT

I
U

two o
-

&O
&O

I

j /o!



P
. By exchange argument .

Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free

Disconnects T into two pieces .

&
! U V-
&O O

/ I

j /o! R
L



P
. By exchange argument .

Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free

By assumption , emax is in some cycle & within G.

=> there exists some edge e'-C (but not inT)
from 1 to R

I
&O

U -
&O O

/ I
O

j
C
d!

e



P
. By exchange argument .

Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free

Consider changing e' for emax
.

T1 = T emax] Ye']

&
! U -
& O

I

% jo! O
-

&

e



Claims.
-

Q +
1

has smaller weight than T

② T is a tree
-

③ T is connected (i . e . a spanning tree)



Claims.
-

① T has smaller weight than T

emax is the max wt . edge on CWW+

-

3
- exchanged for e'eC.

② T is a tree
-

③ T is connected (i . e . a spanning tree)



Claims.
-

Q +
1

has smaller weight than T

② T is a tree
-

- if we add e' to T
,
we only introduce I cycle

- Removing emax breaks this cycle.

③ T is connected (i . e . a spanning tree)



Claims.
-

Q +
1

has smaller weight than T

② T is a tree
-

③ T is connected (i . e . a spanning tree)
- Original T was spanning .

-

Any path using (u ,v) can use detour

from u through 1 to start of
,
then through R to v.



P
. By exchange argument .

Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free

Thus
,
T is a spanning tree w/W+

' < WT

So T is NOT the MST. E

I
&O

U%&O

I

j /O! O
--



EMSTAlgs .

On input G = (VE, W)

Step 0 .

Sort edges by weight

We We . -- Wem

AddMin PalateMax ①
T= (V

, (5) T = (v , E)
For i = 1 -> m

. For i = m ->
1
.

if Tv[e] if T14e3
does not form a cycle I is still connected

Add ei to
T

.
RemoveIn fromT

ReturnT . Return T.



What about Add Min ?

AddMin

T= (V
, (5)

For i = 1 -> m
.

if Tv[e]I does not form a cycle

Add ei to
T

.

ReturnT .



GraphCuts

Given a graph G on vertex set V.

a cut is a partition of the vertices

into S & V and VIS.

S VI

o
oE
·
to8

:

b O

b-S·



Are there
any edges

that MUST be in the MST ?

& Think about cuts

in the graph (



The Cut Lemma
-

Given a connected
, weighted graph G = (V, E,W

ul distinct edge weights ,

* Consider any nontrivial cut (S
,
VIS).

* Let emin be the minimum weight edge

crossing (S , VIS)

Then
& min is in the MST

soSE-VISTerir-

&min = (u , v) for we S
,
veVIS



=dea for Proof of Cut Lemma
, Exchange Argument .

① Start ~ / spanning tree T St . &minT .

② Find an exchange Sit -
-

* Exchange includes emin
& some heavier e'

* Exchange forms a spanning tree

* Exchanged weight drops -> T is not

MST

See I#section



Add Min returns the UST.Crollary.-
aka Kruskal's Algorithm

ProfIdea .

① Show Krushal returns a spanning tree

② Show that
every edge (n ,v) that Krushal adds

is the minimum weight edge emin

crossing some out SEV.

O---- O- j



ImplementingKrushal



EmplementingKruskal's Algorithm

T= (V
, (5)

For i = 1 -> m
.

if Tv[e] does not form a cycle

Add ei to
T

.

ReturnT .



EmplementingKruskal's Algorithm

T= (V
, (5)

For i = 1 -> m
.

if Tv[e] does not form a cycle

MAdd ei to
T

.

I
ReturnT .

How do we test efficiently ?



EmplementingKruskal's Algorithm

T= (V
, (5)

For i = 1 -> m
.

if Tv[e] does not form a cycle

MAdd ei to
T

.

I
ReturnT .

How do we test efficiently ?

-Xintain
a list of connected components of TEdea .

Component (n) = Component (v) <> Adding (u , v)
forms a cycle !



Union - Find Kruskal
-

T= (V
, (5)

Initialize Components : [Ev5 ,
Eve5 , .

-- , Evn3]
For i = 1 -> m

.

(n ,v) ei

if Component (n) # Component (v)I * Add ei to
T

.

A Merge (Component (n) , Component (v) (

ReturnT



Union - Find Kruskal
-

T= (V
, (5)

Initialize Components : [Ev5 ,
Eve5 , .

-- , Evn3]
For i = 1 -> m

.

(n ,v) ei

if Find (n) # Find (v)I * Add ei to
T

.

A Union (Find (u) , Find (v) (
ReturnT .

-

Theorem There is an implementation of the
-

Union - Find data structure that guarantees
Kruskal's Algorithm runs in O(mlogm) time.



Union- Find Data Structure

* Every Component maintains a "Leader"

* Vertices maintain a pointer
towards the component leader 1

k = En ,
v
,w]

* Find (w) -> follow pointers until end

Return the leader

* Union (1 ,
v) -> add a pointer from u

to v (oRv to u)



Moreon MST

* Union - Find is even botte than OCmlogm) !

KIS 4
.

6

* Prim's Algorithm
↳ Similar to Dijkstra's Algo.

but w/ different priority
↳ Also O(mlogm) II 84.

5


