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Announcements
.

Update to wording
of HWQ Q1()

* Canvas published (SORRY !L* KT added to CAMP .

* OH start this afternoon

↳ Prof. Kim -> Gates 203
,
1-3p

↳ See full schedule on course page.

-
dedicated 4820

Locations Rhodes 590 Space 24/7.

Rhodes 655

↑

large room for "peak" of



MTAlgorithms.

Given a weighted graph G = (V
,

E
, w)

Return a minimum spanning free.

Approach Greedy Algorithms-
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Advantage. Fast & Local

Greedy RunningTime ?

-Prototype .

① Sort by "priority" Olnlogn (

② Itwate through elems in priority order I O(n)- Make decision about elem
.

"constant" O(1) time
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AreedyAlgorithms

DesignParadigm .

Choose solution "greedily"
-

Myopic -> local decisions that "look good"
Irrevocabl- > once We make a decision

,

we never reconsider.

Warning . Challenging to analyze correctness

More often than not
,

Greedy approaches are incorrect.



AreedyAlgorithms MST

Given graph G = (V, E ,W)

-GreedyPrototype.
15
weights

Q Sort by "priority
- edges
[

② Itwate through elems in priority order
- Make decision about elem

.
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EMSTAlgs .

On input G = (VE, W)

Step 0 .

Sort edges by weight

We We . -- Wem

AddMin PalateMax

T= (V
, (5) T = (v , E)

For i = 1 -> m
. For i = m ->

1
.

if Tv[e] if T14e3
does not form a cycle I is still connected

Add ei to
T

.
RemoveIn fromT

ReturnT . Return T.



Which algorithm (if any) is correct ?

Given a tree T
,

how do we know that

T is/is not a min spanning tree?



Which algorithm (if any) is correct ?

Given a tree T
,

how do we know that

T is/is not a min spanning tree?

SimplifyingAssumption.

Assume edge weights wa distinct.



Given 9, are there
any edges

that MUST NOT be in

the MST ?

( Consider cycles whin G)



The G = (VIE , W) w/ distinct edge weights .CycleLemma.

Suppose C is a cycle within G and

let emax be the edge in C of

maximum weight.
Then,

&max is NOT in the MST of G.

·
0Cmax
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The Cycle G = (VIE , W) w/ distinct edge weights .temma.

Suppose C is a cycle within G and

let Emax be the edge in C of

maximum weight.
Then,

&max is NOT in the MST of G.

·
0Cmax

↳↳
o

Collary . DeleteMax returns the MST of G .

↳ KT
12

ReverseDelete"



Potof Correctness of Delete Max Cassuming
Cycle Lemma

atteMa,
For i = m ->

1
.

if T14e3I is still connected ↑RemoveIn fromT

Return T.



Potof Correctness of DeleteMax (assuming
Cycle Lemma

By contradiction,

Suppose the MST is T*, but Delete Max returns T & T*

=> DeleteMax deletes some edge (n , v) T*.

TeleteMax

T = (v , E)
For i = m ->

1
.I if Th [ei3 ↑is still connected

RemoveIn fromT

Return T.
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By contradiction,

Suppose the MST is T*, but Delete Max returns T & T*

=> DeleteMax deletes some edge (n , v) T*.
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T

,

7 a path p from uV in T
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Potof Correctness of DeleteMax (assuming
Cycle Lemma

By contradiction,

Suppose the MST is T*, but Delete Max returns T & T*

=> DeleteMax deletes some edge (n , v) T*.

=> puS(u ,v)] is aale in G

But why did we remove (u ,v) ?

TeleteMax

T = (v , E) By removal order (greatest- > least)
For i = m ->

1
.I if Th [ei3 ↑ (u ,v) is the max we

.edgrecycle !
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Potof Correctness of DeleteMax (assuming
Cycle Lemma

By contradiction,

Suppose the MST is T*, but Delete Max returns T & T*

=> DeleteMax deletes some edge (n , v) T*.

=> puS(u ,v)] is aale in G

But why did we remove (u ,v) ?

TeleteMax

T = (v , E) By removal order (greatest- > least)
For i = m ->

1
. (u ,v) is the max we

.edgeif Th [ei3 cycle !
is still connected => By the Cycle Lemma
RemoveIn fromT (n

, v) & T
*

I
Return T.

↑
(A contradiction) E



So, to complete proof of correctness for Delete Max

we need to prove theCycleLemma.



So, to complete proof of correctness for Delete Max

we need to prove theCycleLemma.

Assumptions
① G = (VIE ,

WI wI distinct edge ts
.

② C is a cycle inG containg Cmax

③ emax is the max not edge on C

Conclusion
-

* e max is NOT in MST.

Next ExchangeArgument--
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Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free
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P
. By exchange argument .

Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free

Disconnects T into two pieces .

&
! U V-
&O O

/ I

j /o! R
L



P
. By exchange argument .

Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free

By ② ,
emax is in some cycle C within G.

=> there exists some edge e'-C (but not inT)
from 1 to R

I
U vo -&O
&O O

/ I
O

j
C
d!

e



P
. By exchange argument .

Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free

Consider changing e' for emax
.

T1 = T emax] Ye']

&
! U -
& O

I

% jo! O
-

&

e



Claims.
-

Q +
1

has smaller weight than T

② T is a tree
-

③ T is connected (i . e . a spanning tree)



Claims.
-

① T has smaller weight than T
- emax is the max wt . edge on C 3w+ <w+
- exchanged for e'eC.

by ①&

② T is a tree
-

③ T is connected (i . e . a spanning tree)



Claims.
-

Q +
1

has smaller weight than T

② T is a tree
-

- if we add e' to T
,
we only introduce I cycle

- Removing emax breaks this cycle.

③ T is connected (i . e . a spanning tree)



Claims.
-

Q +
1

has smaller weight than T

② T is a tree
-

③ T is connected (i . e . a spanning tree)
- Original T was spanning .

-

Any path using emax can use detour

along C to go from UKSV .



P
. By exchange argument .

Suppose T is a spanning tree s .
t

. emox = (u , v) -> T

We show that T is NOT the minimum spanning free

Thus
,
T is a spanning tree w/W+

' < WT

So T is NOT the MST. E

I
&O

U%&O

I

j /O! O
--


