
24820 Analysis of Algorithms

Instructor Prof
. Michael Kim

#anfor today

① Motivation for 4820

② Brief Administrivia

③Case study : Tiling Problems

Motivation

Arithms is the study of how to solveacomputationalproblems

-ImputationalProblem Examples
* given a road map ,

find the shortestpath from A to B

* given a list of integers , return them in sortedorder.

* given a social network
,
find a large digue

(mutually-connected accounts)

Can we solve these problems? Can we solve them efficiently ?

Anaforithmisa well-definedseauaproblem
A computational "recipe"
-

* precise inputs/outputs

* Languageagnostic

W4820 ?

W4820 ?

* It's a requirement.

-> Why ? Algorithms show up in every area of CS.

W4820 ?

* It's a requirement.

-> Why ? Algorithms show up in every area of CS.

* The "algorithmic lens" on other fields

-> Algorithms give new perspectives in

Econ
,
Bio , Physics, Sociology , Linguistics

W4820 ?

* It's a requirement.

-> Why ? Algorithms show up in every area of CS.

* The "algorithmic lens" on other fields

-> Algorithms give new perspectives in

Econ
,
Bio , Physics, Sociology , Linguistics

* Understanding the Laws of Nature

-> Algorithmic analysis reveals nature of computation.
& What is is not possible?

W4820 ?

* It's a requirement.

-> Why ? Algorithms show up in every area of CS.

* The "algorithmic lens" on other fields

-> Algorithms give new perspectives in

Econ
,
Bio , Physics, Sociology , Linguistics

* Understanding the Laws of Nature

-> Algorithmic analysis reveals nature of computation.
& What is is not possible?

* Algorithmic Thinking is problem solving
-> Designing algorithms requires creativity-
-> Analyzing algorithms requireslarity of thought

d
Precise definitions &

mathematical proofs.

&Guiding Philosophy
For many computational problems
there is a simple ,

but inefficient algorithm.

&Guiding Philosophy
For many computational problems
there is a simple ,

but inefficient algorithm.

eg. Shortest
Path from A to B :

- Iterate through every path in the road map.
- If the path connects A to B,

↳ record the path and its distance

- Return the A-B path of minimum distance

&Guiding Philosophy
For many computational problems
there is a simple ,

but nefficient algorithm.

e
.g. Shortest

Path from A to B :

- Iterate through every path in the road map.
- If the path connects A to B,

↳ record the path and its distance

- Return the A-B path of minimum distance

Concern
.

There are exprentially many paths in a map.
-

As the map grows bigger,
Brute force is prohibitively expensive !

&Guiding Philosophy
For many computational problems
there is a simple ,

but nefficient algorithm.

e
.g. Shortest

Path from A to B :

- Iterate through every path in the road map.
- If the path connects A to B ,

↳ record the path and its distance

- Return the A-B path of minimum distance

-

#eyQuestion : Can we do better ? I

Fermission: Administrivia

All information & course website

~
cornell

.edu/courses/ as 4820/2025 sp

↳ Ed Discussions & Gradescope

↳ course Staf) Office Hours

* Excus
- Prelim #11 13 Feb 7 : 30p
- Prelim #2

,
27 Mar 7 : 30p

- Final Exam Finals Week TBD
.

&

* Weekly Homework-
- Released on Wed after lecture

- Due Following Tues .

↳ "Grace Period" til Wed AM.

* No slip days
* No grace

on the periodthe period

#ecommended (but optional
HWO Released Today

* Participatingin Class

- Ask questions !
↳ In lecture

he On Ed Discussions
↳ At Office Hours

But also,
Make space for your peers
to ask /answer questions

* Howto get help learning 482material
- HW help (not answers) from peers

& professor .

↳ 39 TAs !

4820 is an Inclusive & Safe

Space for learning.
-
* You belong here

* You deserve respect from your

peers
& the course staff

* We expect you to respect your
peers

& the course staf).

-

For personal concerns
↳ contact Cs4820sp25 @gmail . com

↳ set up a meeting w/ Prof. Kim

Con course site)

Case Study in Computational Problems : TtingProblems

Case Study in Computational Problems : TtingProblems

-

↑-##↑

-

E EIf -& /&-#Il
Tile

SI
Shape t tiling
S

Definition A timing of a shape S with tile t is an arrangement of
-a

non-overlapping copies of t that completely covers S
.

-

-

Example#1 . Domino-Tiling-

* Dominos are 2x1 files 2 I E +

1

TheComino-Tiling Problem .

Given Shape S
,
can S be filed with Dominos ?

Example #1 Pino-Tiling-

* Dominos are 2x1 files 2 I E +

1

TheComino-Tiling Problem .

Given Shape S
,
can S be filed with Dominos ?

*# ⑧ ↳

S : 4x4 square

-

Example #1 Pino-Tiling-

* Dominos are 2x1 files 2 I E +

1

TheComino-Tiling Problem .

Given Shape S
,
can S be filed with Dominos ?

Claim .

S can be Domino-tiled

If . By construction
.

S : 4x4 square #

Example#1 . Domino-Tiling-

* Dominos are 2x1 files 2 I E +

1

TheComino-Tiling Problem .

Given Shape S
,
can S be filed with Dominos ?

S: 4 x4 square

w/ corner removed

Example#1 . Domino-Tiling-

* Dominos are 2x1 files 2 I E +

1

TheComino-Tiling Problem .

Given Shape S
,
can S be filed with Dominos ?

S
claim S CANNOT
- -# S: 4x4 square

be Domino-Tiled

w/ corner removed
Pf. By Parity Argument.

(odd vs
. even)

S
"
6x6 square w/ opposing corners removed.

Can S" be Domino-tiled ?

S
"
6x6 square w/ opposing corners removed.

Claim S" CANNOT be Domino-Tiled
-

M

PF , By coloring argument. ↳
- Every Domino covers exactly 1 White & 1 Blue square

#

S
"
6x6 square w/ opposing corners removed.

Claim S" CANNOT be Domino-Tiled
-

M

PF , By coloring argument. ↳
- Every Domino covers exactly 1 White & 1 Blue square

- Thus
, every shape that can be Domino-tiled has an

equal number of White & Blue squares.-

S
"
6x6 square w/ opposing corners removed.

Claim S" CANNOT be Domino-Tiled
-

-

I 1

oPF , By coloring argument. ↳
- Every Domino covers exactly 1 White & 1 Blue square

- Thus
, every shape that can be Domino-tiled has an

equal number of White & Blue squares.-

- But S"has 16 White squares
&

18 Blue squares #

What about other shapes ?Th

#

What about other shapes ?Th

#
Theorem There is an efficient algorithm

DomiNOTICE
--

that solves the Domino-Tiling Problem .

⑳Hwa

What about other shapes ?MTL
-

#
Theorem There is an efficient algorithm

DomiNOTICE
--

that solves the Domino-Tiling Problem .

DOMINO TILE is CORRECT
-

For every shape S ,
DomiNOTICE outputs a valid tiline

if and only if
-

S can be dominor tiled.

Li . e . if DominoTiLe saysS cannot be

domino-tiled
,

No valid tiling exists)

What about other shapes ?MTL
-

#
Theorem There is an efficient algorithm

DomiNOTICE
--

that solves the Domino-Tiling Problem .

DonNotice is EFFICIENT

Let thu) = Time steps DomiNOTICE executes on

shapes S of area n.

Then
,

there exists cer st . Cu< 0 (n)

DOMINO TILE runs in

Polynomialtime.

Example#2 .

Tromino- Tiling

Example#2 . Tromino-Tiling
t = L-shaped frominos E

ThPromino-Tiling Problem .

Given Shape S
,
can S be filed with

L-shaped Trominos ?

Example#2 . Tromino-Tiling
t = L-shaped frominos E

ThPromino-Tiling Problem .

Given Shape S
,
can S be filed with

L-shaped Trominos ?

Isthere an efficient algorithm that solves Tromino-tiling ?
-

Fre

Example#2 . Tromino-Tiling
t = L-shaped frominosEI

ThPromino-Tiling Problem .

Given Shape S
,
can S be filed with

L-shaped Trominos ?

~m--

9 : Is there an efficient algorithm that solves Tromino-tiling ?
-

A : No one knows ! Mor Den RESEARCH stion

If you give a polynomial-timealgorithm for remino-Tiling,
then...

* You receive an At in 4820 (from Prof. Kim)

If you give a polynomial-timealgorithm for remino-Tiling,
then...

* You receive an A + in 4820 (from Prof. Kim)

* You win $1M (Not from Prof
.

Kim

If you give a polynomial-timealgorithm for remino-Tiling,
then...

* You receive an A + in 4820 (from Prof. Kim)

* You win $1M (Not from Prof
.

Kim

* You break all of modern cryptography
(No more blockchain or secure Internet)

If you give a polynomial-timealgorithm for remino-Tiling,
then...

* You receive an A + in 4820 (from Prof. Kim)

* You win $1M (Not from Prof
.

Kim

* You break all of modern cryptography
(No more blockchain or secure Internet)

* Your algorithm implies super-efficient optimization

le . g ., for training Al models)

ThPromino-Tiling Problem . El
Given Shape S

,
can S be filed with

L-shaped Trominos ?

Theorem . Tromino-Tiling is NP-Hard (NP-Complete)

Solving Tromino-Tiling is the infamous

PENP
problem , lurking in disguise.

HW6

Example#3 . Tiling thePlane

-

Example#3 . Tiling thePlane

Tiling-the-Plane Problem
-

-

Given a finite collection offiles T = Et , . . .

, tu]
can the infinite ID-grid be filed usingT ?

f
infinitely many
copies of any to

T
.

Example#3 . Tiling thePlane

Tiling-the-Plane Problem
-

-

Given a finite collection offiles T = Et , . . .

, tu]
can the infinite ID-grid be filed usingT ?

f
infinitely
copies of many teT.

e. g. Can the plane be filed w/ ENT !

Example#3 . Tiling thePlane

Iting-the-PlaneProblem -

Given a finite collection offiles T = Et , . . .

, tu]
can the infinite ID-grid be filed usingT ?

f
infinitely many
copies of any to

T
.

e. g. Can the plane be filed w/ ENT !
M

~

HA : Yes ! -i-*#17
- -

I IEr- -

I4 T
-

I I1i
IEt
·

Tiling-the-Plane Problem
-

-

Given a finite collection offiles T = Et , . . .

, tu]
can the infinite ID-grid be filed using T ?
--

~noWhat is the best algorithm that solves Tiling-The-Plane ?

Iting-the-PlaneProblem -

Given a finite collection offiles T = Et , . . .

, tu]
can the infinite ID-grid be filed using T ?
--

~noWhat is the best algorithm that solves Tiling-The-Plane ?

Theorem There does NOT exist any algorithm
--

that solves the Tiling-the-Plane Problem.

Tiling-The-Plane is Undecidable.

Why do we care about problems that can't be solved ?

Why do we care about problems that can't be solved ?

Theheck-GPT Problem.

* Write an inefficient algorithm A for 4820 homework

* Ask GPT to return an efficient algorithm A*

that solves the same problem as A.

* Return True iff A and A
*
solve the same problem.

Why do we care about problems that can't be solved ?

Theheck-GPT Problem.

* Write an inefficient algorithm A for 4820 homework

* Ask GPT to return an efficient algorithm A*

that solves the same problem as A.

* Return True iff A and A
*
solve the same problem.

Theorem Check-GPT is Undecidable !
-

No algorithm (current or future) can reliably check the

output of Al for correctness
.

Hwa

