The Max-Cut problem is defined as follows: Given an undirected graph G = (V, E), where |V| = n and |E| = m, find a cut¹ (A, B) that maximizes the cut-size². We assume that G has no self-loops.

As we have seen in HW 7, the decision version of this problem is NP-complete, and a natural question is to design approximation algorithms for the Max-Cut. In this handout, we will design a 2-approximation algorithm for Max-Cut. We briefly mention that there are better approximation algorithms for Max-Cut, but the techniques used are beyond the scope of this class.

In Section 1, we present a randomized 2-approximation algorithm for Max-Cut, and in Section 2, we show how to use efficient constructions of universal hash functions to "derandomize" this algorithm to obtain a (deterministic) 2-approximation algorithm for Max-Cut.

1 A Randomized 2-Approximation Algorithm

We present a simple (randomized) algorithm that achieves approximation ratio of 2. Informally, the algorithm just outputs a *random partition* of the set of nodes. The more formal description is below. We first note some notation that we will use for throughout: we use [n] to denote the set $\{1, 2, ..., n\}$, and associate the set of vertices V with [n].

 $\mathcal{A}^R(G = (V, E)):$

- 1. Let $f : [n] \to \{0,1\}$ be a random function. i.e., for every $i \in [n]$, f(i) is independently and uniformly chosen (from $\{0,1\}$).
- 2. Let $A = \{i \in [n] : f(i) = 1\}, B = [n] \setminus A$.
- 3. If $|C(A, B)| \ge m/2$, output (A, B), else repeat (go to (1)).

We note that if the above algorithm terminates, then indeed the output is a 2-approximation (since any cut has size at most m). Thus, we focus on proving that the algorithm terminates. Towards this goal, define X to be the r.v. denoting the cut size (i.e., |C(A, B)|), and let Y = m - X be the r.v. denoting the number of edges that are not in the cut. We use the usual trick of writing X as a sum of indicator random variables to estimate the mean.

For every $e \in E$, define $I_e = 1$ if $e \in C(A, B)$ and 0 otherwise. It is clear that $X = \sum_{e \in E} I_e$, and thus by linearity of expectation $\mathbb{E}[X] = \sum_{e \in E} \mathbb{E}[I_e]$. We now estimate $\mathbb{E}[I_e]$, which is exactly the probability that $e \in C(A, B)$. We note that $e \in C(A, B)$ only if $f(u) \neq f(v)$. We claim $\Pr[f(u) \neq f(v)] = 1/2$. This can be seen as follows:

Since f is a random function, f(u) and f(v) are independent, uniform random variables on $\{0, 1\}$. Thus, $\Pr[f(u) \neq f(v)] = \Pr[f(u) = 0, f(v) = 1] + \Pr[f(u) = 1, f(v) = 0] = 1/4 + 1/4 = 1/2$.

It thus follows that $\mathbb{E}[X] = m/2$, and thus $\mathbb{E}[Y] = m/2$. In Step 3 of the algorithm above, it repeats if Y > m/2. Let \mathcal{E}_{bad} be the event that Y > m/2, and $\mathcal{E}_{good} = \mathcal{E}_{bad}$. We now bound the probability of \mathcal{E}_{bad} using the Markov's inequality.

We have, $\Pr[\mathcal{E}_{bad}] = \Pr[Y > m/2] = {}^{3}\Pr\left[Y \ge \frac{m+1}{2}\right] = \Pr\left[Y \ge \mathbb{E}[Y](1+\frac{1}{m})\right] \le 1/(1+\frac{1}{m})$, where the last equality follows by the fact that $\mathbb{E}[Y] = m/2$, and the last inequality is by Markov's bound.

It thus follows $\Pr[\mathcal{E}_{bad}] \leq m/(m+1)$, and $\Pr[\mathcal{E}_{good}] \geq 1/(m+1)$, where recall \mathcal{E}_{bad} denotes the probability of repeating (in Step 3), and \mathcal{E}_{good} denotes the probability that the algorithm terminates.

¹recall a cut is simply a partition of the vertices of G into 2 disjoint subsets

²defined as the cardinality of the set $C(A, B) = \{e = (u, v) \in E : u \in A, v \in B\}$

³ using the fact that Y takes integer values

Let Z denote the number of iterations made by the algorithm. It follows that Z is a geometric random variable with $p \ge 1/(m+1)$. It follows that $\mathbb{E}[Z] = 1/p \le m+1$.

We note that each iteration takes time O(m + n), and hence the expected running time of the algorithm is O(m(m + n)).

2 Derandomization via Hash Functions

2.1 A Universal Hash Function Family

We now devise a (deterministic) 2-approximation algorithm for Max-Cut by using universal hash functions. Let $\mathcal{H} = \{h : [n] \to \{0, 1\}\}$ be a universal hash function family. As discussed in class and the textbook, one way of constructing \mathcal{H} is the following: let $w = \lceil \log n \rceil$. Note that each $x \in [n]$ can be uniquely identified by an element of $\{0, 1\}^w$ (bitstrings of length w), just using the bit representation of x. For the description of the hash functions, we think of $x \in [n]$ as an element in $\{0, 1\}^w$.

For every $a \in \{0, 1\}^w$, we define a hash function $h_a \mathcal{H}$ as $h_a(x) = \sum_{j=1}^w a_j x_j \pmod{2}$. It was proved in class (also see the K&T book) that this is a universal hash function family⁴. Thus, for any $x \neq y$, we have the property that for a randomly chosen H from \mathcal{H} , $\Pr[H(x) = H(y)] \leq 1/2$.

Finally, we note that the size of the family \mathcal{H} is $\leq 2n$, since each hash function is indexed by a string in $\{0,1\}^w$ and $w = \lceil \log n \rceil$.

2.2 Another randomized approximation algorithm: a step towards derandomization

Consider the following algorithm that is different from \mathcal{R} in the following way: instead of picking a random f, the new algorithm picks a random hash function.

 $\mathcal{A}^H(G = (V, E)):$

- 1. Let \mathcal{H} be the hash family constructed in the previous section.
- 2. Let $h: [n] \to \{0, 1\}$ be a randomly chosen hash function from \mathcal{H} .
- 3. Let $A_h = \{i \in [n] : h(i) = 1\}, B_h = [n] \setminus A$.
- 4. If $|C(A_h, B_h)| \ge m/2$, output (A_h, B_h) , else repeat (go to (2)).

As before, it is clear that if the algorithm terminates, the output is indeed a 2-approximation. To analyze the performance of this new algorithm, we import some definitions from the analysis of \mathcal{A}^R : Define X to be the r.v. denoting the cut size (i.e., |C(A, B)|), and let Y = m - X be the r.v. denoting the number of edges that are not in the cut. For every $e \in E$, define $I_e = 1$ if $e \in C(A, B)$ and 0 otherwise. It is clear that $X = \sum_{e \in E} I_e$, and thus $\mathbb{E}[X] = \sum_{e \in E} \mathbb{E}[I_e]$. We now estimate $\mathbb{E}[I_e]$, which is the probability that $e \in C(A, B)$. This requires a different argument from before.

We note that $e \in C(A, B)$ only if $h(u) \neq h(v)$. We claim $\Pr[h(u) \neq h(v)] \geq 1/2$. This is immediate just by using the fact that \mathcal{H} is universal, and hence as noted in the previous section $\Pr[H(u) = H(v)] \leq 1/2$. Thus, it follows that $\mathbb{E}[X] \geq m/2$, and thus $\mathbb{E}[Y] \leq m/2$.

The expected running time of \mathcal{A}^H can now be bounded by O((m+n)m) exactly the same way as \mathcal{A}^R .

We conclude by noting the following corollary that is immediate from the bound that $\mathbb{E}[X] \ge m/2$.

Corollary 2.1. There exists $h \in \mathcal{H}$ such that $|C(A_h, B_h)| \ge m/2$.

⁴in fact, a more general construction was presented

3 A deterministic 2-approximation algorithm for Max-Cut

The idea is to simply brute-force over all hash functions \mathcal{H} to find a good hash function that achieves cut-size m/2 (whose existence we proved in the previous section), rather than randomly choosing hash functions from \mathcal{H} as done in \mathcal{A}^{H} . Formally, the algorithm is presented below. $\mathcal{A}^D(G = (V, E)):$

- 1. Let \mathcal{H} be the universal hash family constructed from Section 2.1.
- 2. for all $h \in \mathcal{H}$, compute $|C(A_h, B_h)|$, where $A_h = \{i \in [n] : h(i) = 1\}, B_h = [n] \setminus A$.
- 3. Output (A_h, B_h) that has largest cut-size among all $h \in \mathcal{H}$.

We note that $|\mathcal{H}|$ is $\leq 2n$ (see Section 2.1). Further, computing $C(A_h, B_h)$ can be done in time O(m+n). Thus, the algorithm runs in time O(n(m+n)). Further, correctness is direct from the Corollary 2.1.