The Max-Cut problem is defined as follows: Given an undirected graph $G=(V, E)$, where $|V|=n$ and $|E|=m$, find a cut $^{1}(A, B)$ that maximizes the cut-size ${ }^{2}$. We assume that G has no self-loops.

As we have seen in HW 7, the decision version of this problem is NP-complete, and a natural question is to design approximation algorithms for the Max-Cut. In this handout, we will design a 2-approximation algorithm for Max-Cut. We briefly mention that there are better approximation algorithms for Max-Cut, but the techniques used are beyond the scope of this class.

In Section 1, we present a randomized 2 -approximation algorithm for Max-Cut, and in Section 2, we show how to use efficient constructions of universal hash functions to "derandomize" this algorithm to obtain a (deterministic) 2-approximation algorithm for Max-Cut.

1 A Randomized 2-Approximation Algorithm

We present a simple (randomized) algorithm that achieves approximation ratio of 2. Informally, the algorithm just outputs a random partition of the set of nodes. The more formal description is below. We first note some notation that we will use for throughout: we use $[n]$ to denote the set $\{1,2, \ldots, n\}$, and associate the set of vertices V with $[n]$.

$$
\mathcal{A}^{R}(G=(V, E)):
$$

1. Let $f:[n] \rightarrow\{0,1\}$ be a random function. i.e., for every $i \in[n], f(i)$ is independently and uniformly chosen (from $\{0,1\}$).
2. Let $A=\{i \in[n]: f(i)=1\}, B=[n] \backslash A$.
3. If $|C(A, B)| \geq m / 2$, output (A, B), else repeat (go to (1)).

We note that if the above algorithm terminates, then indeed the output is a 2 -approximation (since any cut has size at most m). Thus, we focus on proving that the algorithm terminates. Towards this goal, define X to be the r.v. denoting the cut size (i.e., $|C(A, B)|$), and let $Y=m-X$ be the r.v. denoting the number of edges that are not in the cut. We use the usual trick of writing X as a sum of indicator random variables to estimate the mean.

For every $e \in E$, define $I_{e}=1$ if $e \in C(A, B)$ and 0 otherwise. It is clear that $X=\sum_{e \in E} I_{e}$, and thus by linearity of expectation $\mathbb{E}[X]=\sum_{e \in E} \mathbb{E}\left[I_{e}\right]$. We now estimate $\mathbb{E}\left[I_{e}\right]$, which is exactly the probability that $e \in C(A, B)$. We note that $e \in C(A, B)$ only if $f(u) \neq f(v)$. We claim $\operatorname{Pr}[f(u) \neq f(v)]=1 / 2$. This can be seen as follows:

Since f is a random function, $f(u)$ and $f(v)$ are independent, uniform random variables on $\{0,1\}$. Thus, $\operatorname{Pr}[f(u) \neq f(v)]=\operatorname{Pr}[f(u)=0, f(v)=1]+\operatorname{Pr}[f(u)=1, f(v)=0]=1 / 4+1 / 4=1 / 2$.

It thus follows that $\mathbb{E}[X]=m / 2$, and thus $\mathbb{E}[Y]=m / 2$. In Step 3 of the algorithm above, it repeats if $Y>m / 2$. Let $\mathcal{E}_{\text {bad }}$ be the event that $Y>m / 2$, and $\mathcal{E}_{\text {good }}=\mathcal{E}_{\text {bad }}$. We now bound the probability of $\mathcal{E}_{b a d}$ using the Markov's inequality.

We have, $\operatorname{Pr}\left[\mathcal{E}_{b a d}\right]=\operatorname{Pr}[Y>m / 2]={ }^{3} \operatorname{Pr}\left[Y \geq \frac{m+1}{2}\right]=\operatorname{Pr}\left[Y \geq \mathbb{E}[Y]\left(1+\frac{1}{m}\right)\right] \leq 1 /\left(1+\frac{1}{m}\right)$, where the last equality follows by the fact that $\mathbb{E}[Y]=m / 2$, and the last inequality is by Markov's bound.

It thus follows $\operatorname{Pr}\left[\mathcal{E}_{b a d}\right] \leq m /(m+1)$, and $\operatorname{Pr}\left[\mathcal{E}_{g o o d}\right] \geq 1 /(m+1)$, where recall $\mathcal{E}_{\text {bad }}$ denotes the probability of repeating (in Step 3), and $\mathcal{E}_{\text {good }}$ denotes the probability that the algorithm terminates.

[^0]Let Z denote the number of iterations made by the algorithm. It follows that Z is a geometric random variable with $p \geq 1 /(m+1)$. It follows that $\mathbb{E}[Z]=1 / p \leq m+1$.

We note that each iteration takes time $O(m+n)$, and hence the expected running time of the algorithm is $O(m(m+n))$.

2 Derandomization via Hash Functions

2.1 A Universal Hash Function Family

We now devise a (deterministic) 2-approximation algorithm for Max-Cut by using universal hash functions. Let $\mathcal{H}=\{h:[n] \rightarrow\{0,1\}\}$ be a universal hash function family. As discussed in class and the textbook, one way of constructing \mathcal{H} is the following: let $w=\lceil\log n\rceil$. Note that each $x \in[n]$ can be uniquely identified by an element of $\{0,1\}^{w}$ (bitstrings of length w), just using the bit representation of x. For the description of the hash functions, we think of $x \in[n]$ as an element in $\{0,1\}^{w}$.

For every $a \in\{0,1\}^{w}$, we define a hash function $h_{a} \mathcal{H}$ as $h_{a}(x)=\sum_{j=1}^{w} a_{j} x_{j}(\bmod 2)$. It was proved in class (also see the K\&T book) that this is a universal hash function family ${ }^{4}$. Thus, for any $x \neq y$, we have the property that for a randomly chosen H from $\mathcal{H}, \operatorname{Pr}[H(x)=H(y)] \leq 1 / 2$.

Finally, we note that the size of the family \mathcal{H} is $\leq 2 n$, since each hash function is indexed by a string in $\{0,1\}^{w}$ and $w=\lceil\log n\rceil$.

2.2 Another randomized approximation algorithm: a step towards derandomization

Consider the following algorithm that is different from \mathcal{R} in the following way: instead of picking a random f, the new algorithm picks a random hash function.

$$
\mathcal{A}^{H}(G=(V, E)):
$$

1. Let \mathcal{H} be the hash family constructed in the previous section.
2. Let $h:[n] \rightarrow\{0,1\}$ be a randomly chosen hash function from \mathcal{H}.
3. Let $A_{h}=\{i \in[n]: h(i)=1\}, B_{h}=[n] \backslash A$.
4. If $\left|C\left(A_{h}, B_{h}\right)\right| \geq m / 2$, output $\left(A_{h}, B_{h}\right)$, else repeat (go to (2)).

As before, it is clear that if the algorithm terminates, the output is indeed a 2 -approximation. To analyze the performance of this new algorithm, we import some definitions from the analysis of \mathcal{A}^{R} : Define X to be the r.v. denoting the cut size (i.e., $|C(A, B)|$), and let $Y=m-X$ be the r.v. denoting the number of edges that are not in the cut. For every $e \in E$, define $I_{e}=1$ if $e \in C(A, B)$ and 0 otherwise. It is clear that $X=\sum_{e \in E} I_{e}$, and thus $\mathbb{E}[X]=\sum_{e \in E} \mathbb{E}\left[I_{e}\right]$. We now estimate $\mathbb{E}\left[I_{e}\right]$, which is the probability that $e \in C(A, B)$. This requires a different argument from before.

We note that $e \in C(A, B)$ only if $h(u) \neq h(v)$. We claim $\operatorname{Pr}[h(u) \neq h(v)] \geq 1 / 2$. This is immediate just by using the fact that \mathcal{H} is universal, and hence as noted in the previous section $\operatorname{Pr}[H(u)=H(v)] \leq$ $1 / 2$. Thus, it follows that $\mathbb{E}[X] \geq m / 2$, and thus $\mathbb{E}[Y] \leq m / 2$.

The expected running time of \mathcal{A}^{H} can now be bounded by $O((m+n) m)$ exactly the same way as \mathcal{A}^{R}.

We conclude by noting the following corollary that is immediate from the bound that $\mathbb{E}[X] \geq m / 2$.
Corollary 2.1. There exists $h \in \mathcal{H}$ such that $\left|C\left(A_{h}, B_{h}\right)\right| \geq m / 2$.

[^1]
3 A deterministic 2-approximation algorithm for Max-Cut

The idea is to simply brute-force over all hash functions \mathcal{H} to find a good hash function that achieves cut-size $m / 2$ (whose existence we proved in the previous section), rather than randomly choosing hash functions from \mathcal{H} as done in \mathcal{A}^{H}. Formally, the algorithm is presented below.

$$
\mathcal{A}^{D}(G=(V, E)):
$$

1. Let \mathcal{H} be the universal hash family constructed from Section 2.1.
2. for all $h \in \mathcal{H}$, compute $\left|C\left(A_{h}, B_{h}\right)\right|$, where $A_{h}=\{i \in[n]: h(i)=1\}, B_{h}=[n] \backslash A$.
3. Output $\left(A_{h}, B_{h}\right)$ that has largest cut-size among all $h \in \mathcal{H}$.

We note that $|\mathcal{H}|$ is $\leq 2 n$ (see Section 2.1). Further, computing $C\left(A_{h}, B_{h}\right)$ can be done in time $O(m+n)$. Thus, the algorithm runs in time $O(n(m+n))$. Further, correctness is direct from the Corollary 2.1.

[^0]: ${ }^{1}$ recall a cut is simply a partition of the vertices of G into 2 disjoint subsets
 ${ }^{2}$ defined as the cardinality of the set $C(A, B)=\{e=(u, v) \in E: u \in A, v \in B\}$
 ${ }^{3}$ using the fact that Y takes integer values

[^1]: ${ }^{4}$ in fact, a more general construction was presented

