
Introduction to Algorithms Approximation Algorithm for Max-Cut
CS 4820 Spring 2023 Handout

The Max-Cut problem is defined as follows: Given an undirected graph G = (V,E), where |V | = n
and |E| = m, find a cut1 (A,B) that maximizes the cut-size2. We assume that G has no self-loops.

As we have seen in HW 7, the decision version of this problem is NP-complete, and a natural
question is to design approximation algorithms for the Max-Cut. In this handout, we will design
a 2-approximation algorithm for Max-Cut. We briefly mention that there are better approximation
algorithms for Max-Cut, but the techniques used are beyond the scope of this class.

In Section 1, we present a randomized 2-approximation algorithm for Max-Cut, and in Section 2,
we show how to use efficient constructions of universal hash functions to “derandomize” this algorithm
to obtain a (deterministic) 2-approximation algorithm for Max-Cut.

1 A Randomized 2-Approximation Algorithm

We present a simple (randomized) algorithm that achieves approximation ratio of 2. Informally, the
algorithm just outputs a random partition of the set of nodes. The more formal description is below.
We first note some notation that we will use for throughout: we use [n] to denote the set {1, 2, . . . , n},
and associate the set of vertices V with [n].

AR(G = (V,E)):

1. Let f : [n] → {0, 1} be a random function. i.e., for every i ∈ [n], f(i) is independently and
uniformly chosen (from {0, 1}).

2. Let A = {i ∈ [n] : f(i) = 1}, B = [n] \A.

3. If |C(A,B)| ≥ m/2, output (A,B), else repeat (go to (1)).

We note that if the above algorithm terminates, then indeed the output is a 2-approximation (since
any cut has size at most m). Thus, we focus on proving that the algorithm terminates. Towards this
goal, define X to be the r.v. denoting the cut size (i.e., |C(A,B)|), and let Y = m − X be the r.v.
denoting the number of edges that are not in the cut. We use the usual trick of writing X as a sum of
indicator random variables to estimate the mean.

For every e ∈ E, define Ie = 1 if e ∈ C(A,B) and 0 otherwise. It is clear that X =
∑

e∈E Ie, and thus
by linearity of expectation E[X] =

∑
e∈E E[Ie]. We now estimate E[Ie], which is exactly the probability

that e ∈ C(A,B). We note that e ∈ C(A,B) only if f(u) ̸= f(v). We claim Pr[f(u) ̸= f(v)] = 1/2.
This can be seen as follows:

Since f is a random function, f(u) and f(v) are independent, uniform random variables on {0, 1}.
Thus, Pr[f(u) ̸= f(v)] = Pr[f(u) = 0, f(v) = 1] + Pr[f(u) = 1, f(v) = 0] = 1/4 + 1/4 = 1/2.

It thus follows that E[X] = m/2, and thus E[Y] = m/2. In Step 3 of the algorithm above, it repeats
if Y > m/2. Let Ebad be the event that Y > m/2, and Egood ≠ Ebad. We now bound the probability of
Ebad using the Markov’s inequality.

We have, Pr[Ebad] = Pr[Y > m/2] = 3 Pr
[
Y ≥ m+1

2

]
= Pr

[
Y ≥ E[Y](1 + 1

m)
]
≤ 1/(1 + 1

m), where
the last equality follows by the fact that E[Y] = m/2, and the last inequality is by Markov’s bound.

It thus follows Pr[Ebad] ≤ m/(m + 1), and Pr[Egood] ≥ 1/(m + 1), where recall Ebad denotes the
probability of repeating (in Step 3), and Egood denotes the probability that the algorithm terminates.

1recall a cut is simply a partition of the vertices of G into 2 disjoint subsets
2defined as the cardinality of the set C(A,B) = {e = (u, v) ∈ E : u ∈ A, v ∈ B}
3using the fact that Y takes integer values

Let Z denote the number of iterations made by the algorithm. It follows that Z is a geometric random
variable with p ≥ 1/(m+ 1). It follows that E[Z] = 1/p ≤ m+ 1.

We note that each iteration takes time O(m + n), and hence the expected running time of the
algorithm is O(m(m+ n)).

2 Derandomization via Hash Functions

2.1 A Universal Hash Function Family

We now devise a (deterministic) 2-approximation algorithm for Max-Cut by using universal hash func-
tions. Let H = {h : [n] → {0, 1}} be a universal hash function family. As discussed in class and the
textbook, one way of constructing H is the following: let w = ⌈log n⌉. Note that each x ∈ [n] can be
uniquely identified by an element of {0, 1}w (bitstrings of length w), just using the bit representation
of x. For the description of the hash functions, we think of x ∈ [n] as an element in {0, 1}w.

For every a ∈ {0, 1}w, we define a hash function haH as ha(x) =
∑w

j=1 ajxj (mod 2). It was proved

in class (also see the K&T book) that this is a universal hash function family4. Thus, for any x ̸= y,
we have the property that for a randomly chosen H from H, Pr[H(x) = H(y)] ≤ 1/2.

Finally, we note that the size of the family H is ≤ 2n, since each hash function is indexed by a string
in {0, 1}w and w = ⌈log n⌉.

2.2 Another randomized approximation algorithm: a step towards derandomiza-
tion

Consider the following algorithm that is different from R in the following way: instead of picking a
random f , the new algorithm picks a random hash function.

AH(G = (V,E)):

1. Let H be the hash family constructed in the previous section.

2. Let h : [n] → {0, 1} be a randomly chosen hash function from H.

3. Let Ah = {i ∈ [n] : h(i) = 1}, Bh = [n] \A.

4. If |C(Ah, Bh)| ≥ m/2, output (Ah, Bh), else repeat (go to (2)).

As before, it is clear that if the algorithm terminates, the output is indeed a 2-approximation. To
analyze the performance of this new algorithm, we import some definitions from the analysis of AR:
Define X to be the r.v. denoting the cut size (i.e., |C(A,B)|), and let Y = m−X be the r.v. denoting
the number of edges that are not in the cut. For every e ∈ E, define Ie = 1 if e ∈ C(A,B) and 0
otherwise. It is clear that X =

∑
e∈E Ie, and thus E[X] =

∑
e∈E E[Ie]. We now estimate E[Ie], which is

the probability that e ∈ C(A,B). This requires a different argument from before.
We note that e ∈ C(A,B) only if h(u) ̸= h(v). We claim Pr[h(u) ̸= h(v)] ≥ 1/2. This is immediate

just by using the fact that H is universal, and hence as noted in the previous section Pr[H(u) = H(v)] ≤
1/2. Thus, it follows that E[X] ≥ m/2, and thus E[Y] ≤ m/2.

The expected running time of AH can now be bounded by O((m + n)m) exactly the same way as
AR.

We conclude by noting the following corollary that is immediate from the bound that E[X] ≥ m/2.

Corollary 2.1. There exists h ∈ H such that |C(Ah, Bh)| ≥ m/2.

4in fact, a more general construction was presented

3 A deterministic 2-approximation algorithm for Max-Cut

The idea is to simply brute-force over all hash functions H to find a good hash function that achieves
cut-size m/2 (whose existence we proved in the previous section), rather than randomly choosing hash
functions from H as done in AH . Formally, the algorithm is presented below.

AD(G = (V,E)):

1. Let H be the universal hash family constructed from Section 2.1.

2. for all h ∈ H, compute |C(Ah, Bh)|, where Ah = {i ∈ [n] : h(i) = 1}, Bh = [n] \A.

3. Output (Ah, Bh) that has largest cut-size among all h ∈ H.

We note that |H| is ≤ 2n (see Section 2.1). Further, computing C(Ah, Bh) can be done in time
O(m + n). Thus, the algorithm runs in time O(n(m + n)). Further, correctness is direct from the
Corollary 2.1.

	A Randomized 2-Approximation Algorithm
	Derandomization via Hash Functions
	A Universal Hash Function Family
	Another randomized approximation algorithm: a step towards derandomization

	A deterministic 2-approximation algorithm for Max-Cut

