Introduction to Algorithms Approximation Algorithm for Max-Cut
CS 4820 Spring 2023 Handout

The Max-Cut problem is defined as follows: Given an undirected graph G' = (V| E), where |V | =n
and |E| = m, find a cut! (A, B) that maximizes the cut-size?. We assume that G has no self-loops.

As we have seen in HW 7, the decision version of this problem is NP-complete, and a natural
question is to design approximation algorithms for the Max-Cut. In this handout, we will design
a 2-approximation algorithm for Max-Cut. We briefly mention that there are better approximation
algorithms for Max-Cut, but the techniques used are beyond the scope of this class.

In Section 1, we present a randomized 2-approximation algorithm for Max-Cut, and in Section 2,
we show how to use efficient constructions of universal hash functions to “derandomize” this algorithm
to obtain a (deterministic) 2-approximation algorithm for Max-Cut.

1 A Randomized 2-Approximation Algorithm

We present a simple (randomized) algorithm that achieves approximation ratio of 2. Informally, the
algorithm just outputs a random partition of the set of nodes. The more formal description is below.
We first note some notation that we will use for throughout: we use [n] to denote the set {1,2,...,n},
and associate the set of vertices V' with [n].

ARG = (V, B)):

1. Let f : [n] — {0,1} be a random function. i.e., for every ¢ € [n], f(i) is independently and
uniformly chosen (from {0, 1}).

2. Let A={ien]: fi) =1}, B=[n]\ A.
3. If |C(A, B)| > m/2, output (A, B), else repeat (go to (1)).

We note that if the above algorithm terminates, then indeed the output is a 2-approximation (since
any cut has size at most m). Thus, we focus on proving that the algorithm terminates. Towards this
goal, define X to be the r.v. denoting the cut size (i.e., |C(4, B)|), and let Y = m — X be the r.v.
denoting the number of edges that are not in the cut. We use the usual trick of writing X as a sum of
indicator random variables to estimate the mean.

For every e € E, define I, = 1if e € C(A, B) and 0 otherwise. It is clear that X =) __p I, and thus
by linearity of expectation E[X] =} . E[I]. We now estimate E[I.], which is exactly the probability
that e € C(A, B). We note that e € C(A, B) only if f(u) # f(v). We claim Pr[f(u) # f(v)] = 1/2.
This can be seen as follows:

Since f is a random function, f(u) and f(v) are independent, uniform random variables on {0, 1}.
Thus, Pr[f(u) # f(v)] = Pr[f(u) =0, f(v) = 1] + Pr[f(u) =1, f(v) =0] =1/4+1/4 =1/2.

It thus follows that E[X] = m/2, and thus E[Y] = m/2. In Step 3 of the algorithm above, it repeats
if Y > m/2. Let Epqq be the event that Y > m/2, and Ejpod = £paa- We now bound the probability of
Epad using the Markov’s inequality.

We have, Pr[€q] = Pr[Y > m/2] =3Pr[Y > 252 =Pr[Y > E[Y](1+ 1)] <1/(1+ 1), where
the last equality follows by the fact that E[Y] = m/2, and the last inequality is by Markov’s bound.

It thus follows Pr[€.q) < m/(m + 1), and Pr[€eq] > 1/(m + 1), where recall &,q denotes the
probability of repeating (in Step 3), and &;poq denotes the probability that the algorithm terminates.

lrecall a cut is simply a partition of the vertices of G into 2 disjoint subsets
2defined as the cardinality of the set C(A, B) = {e = (u,v) € E:u € A,v € B}
3using the fact that Y takes integer values

Let Z denote the number of iterations made by the algorithm. It follows that Z is a geometric random
variable with p > 1/(m + 1). It follows that E[Z] = 1/p < m + 1.

We note that each iteration takes time O(m + n), and hence the expected running time of the
algorithm is O(m(m +n)).

2 Derandomization via Hash Functions

2.1 A Universal Hash Function Family

We now devise a (deterministic) 2-approximation algorithm for Max-Cut by using universal hash func-
tions. Let H = {h : [n] — {0,1}} be a universal hash function family. As discussed in class and the
textbook, one way of constructing H is the following: let w = [logn]. Note that each = € [n] can be
uniquely identified by an element of {0,1}* (bitstrings of length w), just using the bit representation
of z. For the description of the hash functions, we think of = € [n] as an element in {0, 1}*.

For every a € {0,1}", we define a hash function h,H as he(z) = 375_; ajz; (mod 2). It was proved
in class (also see the K&T book) that this is a universal hash function family*. Thus, for any = # ¥,
we have the property that for a randomly chosen H from #H, Pr[H (z) = H(y)] < 1/2.

Finally, we note that the size of the family H is < 2n, since each hash function is indexed by a string
in {0,1}" and w = [logn].

2.2 Another randomized approximation algorithm: a step towards derandomiza-
tion

Consider the following algorithm that is different from R in the following way: instead of picking a
random f, the new algorithm picks a random hash function.

AL(G = (V,E)):

1. Let H be the hash family constructed in the previous section.

2. Let h: [n] — {0,1} be a randomly chosen hash function from H.
3. Let Ap, ={i € [n]:h(i) =1}, B, =[n]\ A.

4. If |C(An, Br)| > m/2, output (A, Bp), else repeat (go to (2)).

As before, it is clear that if the algorithm terminates, the output is indeed a 2-approximation. To
analyze the performance of this new algorithm, we import some definitions from the analysis of A%:
Define X to be the r.v. denoting the cut size (i.e., |C(A, B)|), and let Y = m — X be the r.v. denoting
the number of edges that are not in the cut. For every e € E, define I. = 1 if e € C(A,B) and 0
otherwise. It is clear that X =) __p I, and thus E[X] = > .5 E[l.]. We now estimate E[I.], which is
the probability that e € C(A, B). This requires a different argument from before.

We note that e € C(A, B) only if h(u) # h(v). We claim Pr[h(u) # h(v)] > 1/2. This is immediate
just by using the fact that H is universal, and hence as noted in the previous section Pr[H (u) = H(v)] <
1/2. Thus, it follows that E[X] > m/2, and thus E[Y] < m/2.

The expected running time of A* can now be bounded by O((m + n)m) exactly the same way as
Al

We conclude by noting the following corollary that is immediate from the bound that E[X] > m/2.

Corollary 2.1. There exists h € H such that |C(Ap, Bp)| > m/2.

4in fact, a more general construction was presented

3 A deterministic 2-approximation algorithm for Max-Cut

The idea is to simply brute-force over all hash functions H to find a good hash function that achieves
cut-size m/2 (whose existence we proved in the previous section), rather than randomly choosing hash
functions from A as done in A. Formally, the algorithm is presented below.

AP (G = (V,E)):

1. Let H be the universal hash family constructed from Section 2.1.

2. for all h € H, compute |C(Ap, Bp)|, where Ay, = {i € [n] : h(i) =1}, By = [n] \ A.
3. Output (Ap, By) that has largest cut-size among all h € H.

We note that |H| is < 2n (see Section 2.1). Further, computing C(Ay, By,) can be done in time
O(m + n). Thus, the algorithm runs in time O(n(m + n)). Further, correctness is direct from the
Corollary 2.1.

	A Randomized 2-Approximation Algorithm
	Derandomization via Hash Functions
	A Universal Hash Function Family
	Another randomized approximation algorithm: a step towards derandomization

	A deterministic 2-approximation algorithm for Max-Cut

