
CS 4820: Limits of Computability
Eshan Chattopadhyay, Robert Kleinberg, Xanda Schofield and
Éva Tardos, Cornell University

1 What is computability?

Up until this point, the course has focused on tractability: whether
problems can be solved by a computer algorithm in a reasonable
amount of time with respect to the size of the problem. Here, we con-
sider the broader question of computability, or what can be achieved
by a computer at all. Informal Definition A problem is

computable if an algorithm exists that
can solve that problem in finite time.

Computability is a property of a computational problem. More
specifically, a problem is computable if there exists an algorithm
that solves the problem that can be performed by a computer with
unlimited memory in finite time. We do not specify any other limit
on the running time; it could require exponentially many steps or
arbitrarily large amounts of memory to run an algorithm that solves
this problem, but if the problem is computable, we know that the
algorithm will conclude in a finite amount of time. Even with this
unrestricted a bound on what is required to be computable, however,
there still exist problems that are uncomputable, i.e. for which we can
prove that no such algorithm exists to solve them.

2 Models of computation and the Church-Turing thesis

The definition of computability given above is informal because we
have not yet given formal mathematical meaning to terms such as
algorithm and computer. This same issue, of course, affects every-
thing we’ve said about algorithms up until this point in the course.
However, it not an important issue when asserting the existence of
a particular algorithm to solve a particular problem. The particular
algorithm being analyzed is generally presented in a mathematically
precise way, and the assertion that it is possible to run the algorithm
on a computer is not presented as a mathematical assertion but as a
factual claim that you can verify by coding up the algorithm yourself
and running it.

On the other hand, when asserting the non-existence of algorithms
to solve a particular problem (i.e. when asserting that a problem is
uncomputable) the lack of a precise definition of algorithms and
computation becomes a fatal flaw in the logic. If one is imprecise
about the meanings of these terms, one might always wonder, “Is it
really impossible to design an algorithm to solve this problem, or has
mankind just failed to come up with the right hardware or software

Limits of Computability Course Handout © 2019 by Eshan Chattopadhyay, Robert Kleinberg, Alexandra Schofield and Éva Tardos.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



feature that makes the problem solvable?”
In the 1930’s, mathematicians formalized the definitions of algo-

rithms and computation in different ways. Perhaps the two most
famous and influential such definitions are the lambda calculus the
Turing machine, both proposed in the 1930’s by Alonzo Church and
Alan Turing, respectively. Lambda calculus is briefly discussed in
CS 3110 and constitutes a core topic of CS 4110. Turing machines,
which we’ll encounter later in these notes, are basically discrete finite
automata augmented with an infinite memory. These two models of
computation, and all of the other universal models of computation
proposed before or since, have been found to be computationally equiv-
alent, meaning that any problem which is computable in one model is
computable in all of them. These computationally equivalent models
are collectively referred to as Turing-complete. Because Turing- Definition Two models of computation

are computationally equivalent if they
define the same set of computable
problems. The Turing-complete models
of computation are those that model
the capabilities of general-purpose
computers.

complete models are capable of describing every computational
process that computer scientists, mathematicians, philosophers,
and natural scientists have ever been able to imagine, the scientific
community generally subscribes to the Church-Turing thesis, asserting
that any computation that can be feasibly performed in our universe
can be performed using the lambda calculus, a Turing machine,
or any other Turing-complete model of computation. The Church-
Turing thesis is not a mathematical theorem, it is a meta-mathematical
statement about the meaning of algorithms and computation. In that
sense, when we say a problem is uncomputable, the real meaning
of the statement is, “No algorithm can solve this problem in a uni-
verse where the capablities of algorithms and computers obey the
Church-Turing thesis, and there is strong consensus in the scientific
community that our universe is one such universe.” The discovery
of a computer that can violate the Church-Turing thesis would be
a flabbergasting discovery, akin to the discovery of faster-than-
light transportation, but it is not a possibility that can be ruled out
mathematically.

Turing-complete models of computation tend to have some key
characteristics in common. These are:

1. Algorithms are described by finite-sized programs.

2. Computers execute algorithms using a finite amount of internal
state and an infinite amount of memory.

3. The program describing one algorithm can be used as the input to
another algorithm.

4. The programming language is sophisticated enough that it is
capable of universality: one can write an algorithm that can simu-
late the execution of any other algorithm, given that algorithm’s



program as input.

The assumption that algorithms run on computers with an infinite
amount of memory is clearly not realistic. There are two justifications
for making this assumption. First, modern computers have access
to so much memory (especially if they are attached to a network)
that for most practical purposes one doesn’t have to worry about the
limitations on how much data they can store. Second, since our main
intent in this part of the course is to prove limitations on the power of
computation, if we can prove that a problem is impossible to solve
even on a hypothetical computer equipped with infinite memory, it
implies a fortiori that the problem is also unsolvable on a real-world
computer with finite memory.

You have already learned at least one programming language,
e.g. Java, that is Turing-complete. Certain features of the Java lan-
guage (classes, methods, inheritance, generic types, exception han-
dling, importing packages, etc.) are convenient for the purpose of
writing programs but inconvenient for the purpose of reasoning
formally about their semantics. Therefore, in these notes, we will
formalize the model of computation using two computationally
equivalent models: Turing machines, and a very simple program-
ming language we will define called SJava or Simplified Java, whose
syntax resembles Java minus the object-oriented features of the
language. Turing machines furnish an economical definition of
computation with the minimum nnumber of conceptual ingredients;
however, they are ill-suited for expressing algorithms in a human-
readable form. SJava is designed to be comparable to Java code in
terms of readability, with the benefit that its semantics are much
easier to comprehend and formalize than the semantics of Java.

3 Turing machines

A Turing machine can be thought of as a finite state machine sitting
on an infinitely long tape containing symbols from some finite
alphabet Σ. Based on the symbol it’s currently reading, and its
current state, the Turing machine writes a new symbol in that lo-
cation (possibly the same as the previous one), moves left or right or
stays in place, and enters a new state. It may also decide to halt. The
machine’s transition function is the “program” that specifies each of
these actions (next state, next symbol to write, and direction to move
on the tape) given the current state and the symbol the machine is
currently reading.

Actually, we will base our model of computation on a general-
ization of this idea, the multi-tape Turing machine, which has a finite



number of infinite tapes (potentially more than one) each with its
own read-write head that can move independently of the others.
A single finite state controller jointly controls all of the read-write
heads.

Specification of a Turing machine

Definition 1. A Turing machine is specified by:

1. a finite set Σ called the alphabet, with a distinguished subset Ω
called the set of input symbols and a distinguished element of Σ \Ω
called the blank symbol and denoted by underscore (_);

2. a finite set of states Q with two distinguished elements: s (the
starting state) and t (the terminal or halting state);

3. a finite set of tapes [T] = {1, 2, . . . , T} with two distinguished
subsets I (the input tapes) and O (the output tapes);

4. a transition function

δ : Q× ΣT → Q× ΣT × {−1, 0, 1}T

that specifies, for any given state and T-tuple of symbols, what
the machine should do next: the state to which it transitions, the
T-tuple of symbols that it writes on its tapes, and the T-tuple of
directions that it moves on each tape.

Often, a Turing machine is defined as having a single tape that
serves as both the input and the output tape (i.e., the case T = 1 and
I = O = [T]). This definition is conceptually simpler and is com-
putationally equivalent in the sense that any function computable
by a multi-tape Turing machine is also computable by a single-
tape Turing machine. However algorithms implemented on single-
tape Turing machines often have asymptotically slower running
times than the same algorithm implemented on modern computing
hardware with random-access memory. Multi-tape Turing machines,
which lacking an abstraction of random access memory, tend to
permit implementations of algorithms whose running time has the
same asymptotic order of growth as if they were implemented on
a random-access machine. For this reason, we prefer the multi-tape
formalism in CS 4820.

Configurations and computations

Having defined the specification of a Turing machine, we must now
pin down a definition of how they operate and what they compute.
This has been informally described above, but it’s time to make it



formal. That begins with formally defining the configuration of the
Turing machine at any time (the contents of its tapes, as well as the
machine’s own state and its position on each tape) and the rules for
how its configuration changes over time.

The set Σ∗ is the set of all finite sequences of elements of Σ,
and Σ∞

c is the set of all infinite sequences of elements of Σ that are
finitely supported, meaning that all but finitely many elements of the
sequence are equal to _. When an element of Σ∗ is denoted by a
letter such as x, then the elements of the sequence x are denoted by
x[0], x[1], x[2], . . . , x[n− 1], where n is the length of x and is denoted
by |x|. Similarly for an infinite sequence x ∈ Σ∞

c , the elements of x
are denoted by x[0], x[1], . . ..

A configuration of a Turing machine is an ordered triple (q, x, k) ∈
Q× (Σ∞

c )T ×NT , where q denotes the machine’s current state, x =

(x1, x2, . . . , xT) denotes T-tuple of strings on the tapes, and k =

(k1, k2, . . . , kT) denotes the T-tuple of positions of the machine on the
tapes.

Suppose M is a Turing machine and (q, x, k) is its configuration
at any point in time. If q 6= t (the machine hasn’t halted) then the
configuration at the following point in time, (q′, x′, k′), is determined
as follows. Let σ = (σ1, . . . , σT) denote the T-tuple of symbols that
the machine is reading, i.e. σi = xi[ki] for all i ∈ [T]. Let (q′, ρ, `) =

δ(q, σ). For all i ∈ [T] the new string on tape i, x′i , is obtained from
xi by changing xi[k] to ρi. The new position k′[i] is equal to k[i] + `[i]
unless k[i] + `[i] = −1, in which case k′[i] = 0. We say that M
transitions from (q, x, k) to (q′, x′, k′).

A computation of a Turing machine is a sequence of configurations
(qj, xj, kj) indexed by a sequence of consecutive time steps j starting
from 0, that satisfies:

• The machine starts in a valid starting configuration, meaning that
q0 = s and k0 = (0, 0, . . . , 0).

• Each pair of consecutive configurations represents a valid transi-
tion of M.

• If the sequence is infinite we say that the computation does not halt.

• If the sequence is finite and its length in m, we require that the
final state qm−1 is equal to the halting state t, we say that the
computation halts, and we refer to m as the running time of the
computation.

Finally, having specified how Turing machines compute, let us now
specify what they compute. First we must define two functions

pad : Σ∗ → Σ∞
c , unpad : Σ∞

c → Σ∗



as follows. If y ∈ Σ∗ then pad(y) is formed from y by appending an
infinite sequence of blank symbols. If x ∈ Σ∞

c then unpad(x) is the
longest initial subsequence of x that contains no blank symbols. Note
that if y ∈ Σ∗ contains no blank symbols then unpad(pad(y)) is equal
to y but otherwise it is strictly shorter than y.

Suppose we are given an I-tuple of strings, y = (yi)i∈I . The
computation of M with input y is the unique computation of M that
starts with tape contents xi = pad(yi) for i ∈ I and xi = pad(ε)
for i 6∈ I. Here ε denotes the empty string, so pad(ε) denotes a tape
containing nothing but blank symbols.

If the computation of M with input y halts, we say that M halts
on y. Letting x = (x1, . . . , xT) denote the tape contents in the final
configuration of the computation, and letting zi = unpad(xi) for each
i, we call the O-tuple z = (zi)i∈O the output of the Turing machine,
and we write M(y) = z. If M does not halt on y we write M(y) =↗.

A partial function between two sets A and B is a function f : D → B
where D is a subset of A called the domain of f . If f : (Ω∗)I → (Σ∗)O

is a partial function from I-tuples of input strings to O-tuples of
output strings, and if D is the domain of f , then we say that Turing
machine M computes f if M(y) = f (y) for all y ∈ D and M(y) =↗
for all y 6∈ D.

Example: computing the substring relation

To illustrate how Turing machines work, in this section we present a
Turing machine that computes whether one string is a substring of
another. Recall that x1 is said to be a substring of x2 if the symbols
in x1 form a contiguous subsequence of the symbols in x2. We will
design a Turing machine M with input alphabet Ω = {0, 1} such that
M(x1, x2) = 1 if x1 is a substring of x2 and M(x1, x2) = 0 otherwise.

Our machine will have three tapes: two input tapes containing x1

and x2 respectively, and an output tape that is only used in the final
transition of the computation to write a 1 or 0. The algorithm that we
will use to test if x1 is a substring of x2 is the obvious one: for each
starting position p = 0, 1, . . . , |x2| − |x1| we will test if a substring
of x2 starting at p matches x1. Thus, there will be an outer loop that
iterates over p, and an inner loop that iterates over the symbols in
x1. Of course, loops are not explicitly defined in the semantics of
Turing machine computations, but we’ll use the state transition
rules to implement a loop. A more challenging problem concerns
the fact that |Q|, the size of the state set, might be much smaller
than |x1| and |x2|, so the loop counters can’t be stored in the Turing
machine’s internal state. Instead loop counters have to be stored,
either explicitly or implicitly, in the form of information on the tapes



or information about the positions of the tape heads. In particular,
when an iteration of the inner loop ends without finding a match
between x1 and a contiguous subsequence of x2, we need to return
to the position in x2 where began checking for a match. However,
the Turing machine’s internal state can’t store enough information
to locate that position. Instead we’ll record the location by writing a
blank symbol (_) on the input tape containing x2. This will overwrite
one of the symbols of x2, but it won’t matter because the overwritten
symbol cannot belong to a substring that matches x1.

In more detail, the Turing machine has states s, c, r, t with the
following meanings and functionalities.

• s is the starting state. This state is used not only at the start of the
entire computation but at the start of each iteration of the outer
loop. In state s we check whether the first symbol of x1 matches
the earliest symbol of x2 that hasn’t yet been tested as a potential
beginning of substring that matches x1. We also overwrite this
symbol of x2 with _ to mark the position on the tape where this
iteration of the outer loop began.

• c is the comparing state. This state checks whether a symbol of x1

matches the corresponding symbol of x2.

• r is the returning state. It is used after an iteration of the outer loop
fails to find a match, to return to the position where we began the
outer loop iteration.

• t is the terminating state. It is used to halt the Turing machine after
writing the output.

The transition function is represented in Table 1. For brevity, we
have omitted the lines of the table that specify the value of δ(q, σ1, σ2, σ3)

when the symbol on the output tape, σ3, is not the blank symbol.
That is because those transitions are irrelevant: the machine we are
designing never writes a non-blank symbol on the output tape until
the moment that it terminates. For the same reason, we have omitted
the lines of the table that specify the value of δ(t, σ1, σ2, σ3) since there
cannot be transitions out of the terminal state t.

4 SJava: a simplified Java-like syntax for expressing algorithms

It’s probably clear from the example in Table 1 that Turing ma-
chine transition functions are actually a terrible way of presenting
algorithms to human beings. For the purpose of reasoning about
algorithms and computability in these notes, it will be convenient to
have a syntax for expressing algorithms which is human-readable,



δ(q, σ1, σ2, σ3)

q σ1 σ2 σ3 q′ ρ1 ρ2 ρ3 `1 `2 `3 comment
s _ 0 _ t _ 0 1 0 0 0 x1 is the empty string
s _ 1 _ t _ 1 1 0 0 0
s _ _ _ t _ _ 1 0 0 0
s 0 0 _ c 0 _ _ +1 +1 0 symbols match; keep checking
s 1 1 _ c 1 _ _ +1 +1 0
s 0 1 _ r 0 _ _ 0 0 0 mismatch
s 1 0 _ r 1 _ _ 0 0 0
s 0 _ _ t 0 _ 0 0 0 0 reached end of x2; x1 can’t be a substring
s 1 _ _ t 1 _ 0 0 0 0
c _ 0 _ t _ 0 1 0 0 0 reached end of x1; match found!
c _ 1 _ t _ 1 1 0 0 0
c _ _ _ t _ _ 1 0 0 0
c 0 0 _ c 0 0 _ +1 +1 0 symbols match; keep checking
c 1 1 _ c 1 1 _ +1 +1 0
c 0 1 _ r 0 1 _ 0 0 0 mismatch
c 1 0 _ r 1 0 _ 0 0 0
c 0 _ _ t 0 _ 0 0 0 0 reached end of x2; x1 can’t be a substring
c 1 _ _ t 1 _ 0 0 0 0
r _ 0 _ t _ 0 0 0 0 0 this line irrelevant: σ1 is never _in state r
r _ 1 _ t _ 1 0 0 0 0
r _ _ _ t _ _ 0 0 0 0
r 0 0 _ r 0 0 _ −1 −1 0 keep moving left; don’t overwrite symbols
r 0 1 _ r 0 1 _ −1 −1 0
r 1 0 _ r 1 0 _ −1 −1 0
r 1 1 _ r 1 1 _ −1 −1 0
r 0 _ _ s 0 _ _ 0 +1 0 returned to _on tape 2; start again at next symbol
r 1 _ _ s 1 _ _ 0 +1 0

Table 1: Turing machine to compute the
substring relation



like pseudocode. On the other hand, since our aim is to reason
in a logically rigorous way about the limits of computation, rather
than using pseudocode containing natural-language phrases whose
meaning is subject to interpretation, it will be convenient when
possible to express algorithms in a language with precisely-defined
semanics.

Since you are all familiar with Java, we have chosen in these
notes to express algorithms in a language with Java-like syntax,
but omitting superfluous object-oriented features of Java that are
irrelevant for present purposes. We keep only the bare essentials of
an imperative programming language: variables, arrays, functions,
assignment statements, control flow. We call this language Simplified
Java, or SJava.

By way of illustration, we have rewritten the program for comput-
ing whether x1 is a substring or x2 in SJava in Figure 1.

boolean substring(string x1, string x2) {
pos2 = 0;
while (pos2 < length(x2)) {

if (testMatch(x1, x2, pos2)) {
return true;

}
pos2 = pos2 + 1;

}
return false ;

}

boolean testMatch(string s1, string s2 , int offset ) {
// Does s1 match s2 starting from offset2?

if (length(s1) > (length(s2) − offset )) {
return false ; // s1 is too long

}
pos1 = 0;
pos2 = offset ;
while (pos1 < length(s1)) { // main loop: look for mismatches

if (s1[pos1] != s2[pos2]) {
return false ;

}
pos1 = pos1 + 1;
pos2 = pos2 + 1;

} // loop completed; no mismatch found
return true;

}

Figure 1: SJava program to compute the
substring relation.



Data types

Each expression in a SJava program has a value in one of the follow-
ing data types.

• boolean: a value that is either true or false.

• int: a value in Z∪ {⊥}, where ⊥ is a special “not a number” value
used to handle cases such as division by zero.

• char: a character from a pre-specified set Σ. Specifying the char-
acter set Σ is part of specifying the model of computation. For
concreteness, we take Σ to be the ASCII character set.

• string: a finite sequence of characters.

• array: a finite sequence of integers.

There is no limitation on the number of characters in a string or
the number of elements in an array. Note that SJava only allows
arrays of integers. A string is, in effect, the same thing as an array
of characters. But one cannot create an array of Booleans, strings,
or arrays, nor can one create an array whose contents constitute a
mixture of integers and characters.

Each data type has a default value: false for Booleans, 0 for inte-
gers, _ for characters, ε for strings, and ∅ for arrays.

Program structure

A SJava program is organized as a sequence of function definitions.
The first function in the sequence (called the base function) is inter-
preted as the “main” function (even if it is not called “main”) and the
value it returns is interpreted as the program’s output.

The body of a function is enclosed in curly braces and consists of
a sequence of statements. Each statement is either an assignment,
a control-flow statement (if, else, while, or return), or a curly brace
denoting the end of a block of code. These are discussed further
below. Programs may contain comments, for the sake of readability.
If a line of code contains two consecutive slashes ("//") then any
characters from the double-slash until the next new-line are ignored.

Variables

Variables are named by strings that may not contain whitespace
and must start with a letter of the English alphabet. The scope
of a variable is local to the function in which it is used;. The first
time a variable is used in a function must either be in the function
declaration (where the variable is declared to be one of the function’s



arguments) or on the left side of an assignment statement. In the
latter case the variable’s type is inferred from the expression on the
right side of the assignment. Variables are automatically initialized
with the default value for their data type.

Expressions

An expression is a segment of code that can be evaluated to yield a
value. It must be one of the following.

1. a variable name, such as n

2. a constant, such as 2

3. an array element or string element, such as x[n]

4. a function applied to a tuple of expressions, such as testMatch("Hello",str,n+m)

5. a binary operation applied to two expressions, such as test-
Match("Hello",str,0) || testMatch("World",str,0)

6. a string or array element, such as str[n+1]

Assignment statements

Assignment statements are in one of two forms.

x = expr;
x[n] = expr;

In both cases x is a variable and expr is an expression (which may
contain the variables x and n as sub-expressions). Execution of the
assignment statement begins by evaluating the expression. The
resulting value then replaces the value of x in the first case, or x[n]
in the second case, which requires x to be a string or array. If n is
less than zero, then x is unchanged. If n+1 exceeds the length of x,
then after the expression on the right side is evaluated, x is padded
with copies of the relevant default value (i.e., _ for the characters of a
string, 0 for the integers in an array) until its length equals n+1, and
then the value of the expression on the right side is substituted for
x[n].

Control flow

The semantics of if, else, and while statements are exactly as in Java.
The conditional expression in an if statement or while loop must be
an expression of Boolean type, enclosed in parentheses.

A return statement must be followed by an expression whose type
matches the return-value type of the function in which it appears.



When executing a return statement, the expression is first evaluated
and then the value is substituted in the expression which called the
function. (An exception is the base function which was called when
the program first started running; its return value is treated as the
program’s output.)

If the execution of a function reaches the last line of the function’s
body without executing a return command, the function returns the
default value for its return-value type.

Small-step semantics of SJava

We have explained the syntax of the SJava language and we have
written informally about its semantics, i.e. what it means to execute a
SJava program. Towards describing how to write a SJava interpreter,
we must now specify its small-step semantics. That is, we will specify
how the execution state is represented as a program executes, and how
the state is updated as steps of the program are executed.

Function state: the state of a function as it executes is an ordered
pair (c, φ) where:

• c is the program counter, a natural number denoting the position of
the next instruction to be executed. The value of c is the absolute
position of the first character of this instruction in the SJava

program to which the function belongs.

• φ is a dictionary mapping all the variable names and constant
expressions that occur in the function to their current values.

Execution state: Since functions in a SJava program may call
other functions, the overall state of a program can be conceptu-
alized as a stack of function states, where the top of the stack is
the state of the function currently being executed, and the other
elements of the stack are the states of the functions whose execution
is paused pending a return value from the function above them in
the stack. Mathematically, we will represent this stack as a finite
sequence of ordered pairs {(ci, φi)}h

i=0, where the last element of the
sequence, (ch, φh), represents the top element in the stack. “Popping
the stack” refers to modifying this sequence by deleting its last
element, whereas “pushing an element onto the stack” refers to
modifying the sequence by appending one element at the end.

Initial state of a function: Every function f has a well-defined
initial state (cinit( f ), φinit( f )). The initial program counter position,
cinit( f ), is the location of the first non-whitespace character after
the curly brace that starts the function body. The initial dictionary,
φinit( f ), assigns to each variable the default value of its associated
type.



Initial execution state of a program: The initial execution state
of a SJava program is a one-element stack consisting of the function
state (cinit(b), φinit(b)), where b is the base function of the program.

Evaluating an expression: The rules for evaluating an expression
in a given execution state vary according to the format of the expres-
sion.

1. If the expression is a term its value is read from the dictionary
phih.

2. If it is a string or array element its value is determined by the
rules specified above under “Operations on strings and arrays”.

3. If the expression applies a binary operation or built-in function
(such as length(·)) to one or two terms, the values of those terms
are extracted from the dictionary and the expression’s value is
determined as explained above when we described SJava’s binary
operations and built-in functions.

4. If the expression involves application of a function f , the exe-
cution state is changed by pushing the initial state of f onto the
stack.

The first three cases don’t change the execution state but they do
yield a value; we will call this immediate evaluation. The remaining
case, which we will call pending evaluation, changes the program state
by pushing a new function state onto the stack.

Updating the execution state: SJava programs are deterministic,
meaning that for every execution state there is a uniquely defined
subsequent state. The subsequent state depends on the current state
{(ci, φi)}h

i=0 and on the instructions contained in the line of code that
starts at position ch in the program, i.e. the line of code pointed to by
the program counter of the function state at the top of the stack. Af-
ter discarding comments from the end of the line, there are six types
of lines of code, and each of them changes the execution state in a
different way. In the following discussion, “program counter” and
“dictionary” refer to ch and φh, the program counter and dictionary
of the function state residing at the top of the stack before executing
the line of code.

1. Blank lines: A line consisting entirely of whitespace is executed
by advancing the program counter to the next line (i.e., the charac-
ter immediately following the←↩ at the end of the line).

2. Assignment statements: The right side of an assignment state-
ment is an expression. To execute the assignment statement,
the first step is to evaluate the expression on the right side. An



immediate evaluation yields a value, and the execution state is
modified as follows. The dictionary is modified by substituting
that value for the value of the variable appearing on the left side
of the assignment statement. The program counter is advanced to
the next line. A pending evaluation doesn’t change φh or ch but
increases the stack depth.

3. if statements: The conditional expression is evaluated. In the
case of an immediate evaluation, the program counter is updated
to the first (non-whitespace) character of the “then block” or the
“else block”, depending if the value is true or false. A pending
evaluation doesn’t change φh or ch but increases the stack depth.

4. while statements: The conditional expression is evaluated. In
the case of an immediate evaluation yielding true, the program
counter is updated to the first (non-whitespace) character inside
the body of the while loop. In the case of an immediate evaluation
yielding false, the program counter is updated to the first (non-
whitespace) character following the body of the while loop. A
pending evaluation doesn’t change φh or ch but increases the stack
depth.

5. return statements: The expression following the keyword return
is evaluated. A pending evaluation doesn’t change φh or ch but
increases the stack depth. An immediate evaluation yielding value
v is more interesting. If h = 0 then the stack contains only one
function state, namely the base function. Execution terminates
and the program outputs v. If h > 0 then the stack is popped.
The function state (ch−1, φh−1) is now at the top of the stack,
and the program counter ch−1 is at the start of a line of code
whose execution produced a pending expression evaluation. The
execution state is now updated as if the expression in that line of
code had evaluated immediately to v.

6. End of a block: A right curly brace represents the end of a func-
tion body, a while loop, or one of the two blocks of an if statement.
Upon reaching the end of a function body, the execution state
changes as if it had reached a return statement whose expression
immediately evaluated to the default value of the function’s return
type. Reaching the end of a while loop moves the program counter
back to the beginning of the line containing the corresponding
while statement. Reaching the end of one of the blocks of an if
statement moves the program counter to the first non-whitespace
character following the conclusion of all blocks of the if statement.

We conclude this section with a remark about running times. It
is tempting to model the execution of one line of a SJava program



as taking O(1) time. Unfortunately that model doesn’t accurately
reflect the amount of time it takes to run a program on an actual
computer. The issue is that the integer, string, and array data types
in SJava store an unbounded number of bits. Operations performed
on these data types in a single line of code (such as multiplying two
integers, or copying the value of a string to another variable) would
take an amount of time that depends on the number of bits required
to represent the operands.

To illustrate the issue concretely, consider the following SJava

program.

int doubleExponential(int n) {
x = 3;
while (n > 0) {

x = x ∗ x;
n = n − 1;

}
return x;

}

This program performs n loop iterations, each of which performs
only 2 arithmetic operations. Yet it returns the integer 32n

; merely
writing the return value in binary requires 2O(n) digits. So the run-
ning time of this innocuous-looking program is actually exponential
in n.

The standard model of computation assumes that when one
executes a program on an input of size n bits, operations performed
on blocks of bits of size O(log n) take constant time. For operations
that manipulate objects larger than O(log n) in a single line of code,
the algorithm designer is responsible for thinking about how to
implement the operation as a sequence of constant-time steps each
of which reads and writes at most O(log n) bits of data. This assump-
tion that the number of bits that can be manipulated in one time step
scales logarithmically with the size of the program’s input appears
strange at first, but it turns out to be roughly consistent with the
history of how datasets and computer architecture have co-evolved.
Computers with 16-bit architectures used to be commonplace, they
were eventually supplanted by 32-bit computers, which in turn were
supplanted by 64-bit computers. Meanwhile, with each doubling of
the number of bits, the size of the datasets encountered in typical
computing workloads roughly squared.

5 The universal SJava program

Recall that a key characteristic of Turing-complete models of compu-
tation is universality, the ability for one single algorithm to simulate



the execution of any other algorithm, given a program describing
that algorithm as input. In this section we will illustrate that SJava

has this property. In other words, we will show that it is possible to
write a SJava interpreter in SJava. The code for such an interpreter is
called a universal SJava program. We won’t actually present the source
code of a universal SJava program in these notes — that would be
quite tedious — but we’ll explain the key ingredients that need to be
assembled in order to write one.

A SJava interpreter should simulate the execution of any SJava

program running on any valid input. The difficulty of using one
program to simulate every possible program becomes apparent as
soon as we ask ourselves the question, “What should be the return
value type of the SJava interpreter’s base function?” The interpreter
needs to simulate a function whose return value could be any of
bool, int, char, string, or array. A similar question arises when we
consider how the interpreter’s input should represent the input to the
program it is simulating. A SJava program’s base function can have
any finite number of arguments; this tuple of arguments constitutes
the input to the program. The interpreter, on the other hand, must
have a pre-specified number of arguments and they must be of pre-
specified types. How is a program with, say, two string arguments
supposed to simulate a program with five integer arguments?

Encoding data as strings

The key to getting around this issue is to represent everything as a
string. Values of variables and expressions, the tuple of values that
constitutes the input to a SJava program, the value that the program
outputs, its function states, and its execution state — all of these will
be represented as strings by the interpreter. We now specify how the
string representation of each of these elements is defined.

Boolean values true is represented as the four-character string “true”,
false is represented as the five-character string “false”.

Integers An integer is represented in base 10, as a string of digits
potentially preceded by the ‘-’ character in the case of negative
numbers. The integer ⊥ is represented using the underscore
character.

Characters A character is represented using a single quote, followed
by one character, followed by another single quote.

Strings A string is represented using a double quote, followed by a
sequence of characters each preceded by a backslash, followed by a
double quote.



Arrays An array is represented using a left square bracket, followed
by a comma-separated list of strings representing integers, fol-
lowed by a right square bracket.

Program input The input to a SJava program is a tuple of values.
This is represented using a left parenthesis, followed by a comma-
separated list of strings each representing a value, followed by a
right parenthesis.

Program output The program outputs a value of type bool, int, char, string,
or array. The rules for formatting each of these types as a string
have already been explained.

Function state A function state is represented by a string in the
format (c, {name1 = val1, name2 = val2, . . . , namem = valm}).
Here, c is a string representing the integer value of the program
counter. Each namei (i = 1, . . . , m) is the name of a variable and
vali is a string representing the variable’s value.

Execution state The execution state of a program is a sequence of
function states. To represent this sequence as a string, we simply
concatenate the strings representing each of the function states
in the sequence. The execution state of a program that has termi-
nated is represented by the string that represents the value of the
program’s output.

Simulating execution of the program

Since we defined program execution in terms of small-step semantics,
it makes sense for the interpreter’s code to have the overall structure
of the skeleton code in Figure 2.

6 Formalizing uncomputability

Now that we have a model of computation, we need to formalize
what it means for something to be computable under a model of
computation. To simplify how we consider computation, we are
going to describe all of our problems as decision problems, or problems
with a true or false answer. While this might seem like a restriction,
this does not affect what we can or cannot compute, as we can use
decision problems to reconstruct more complex solutions bit by bit.

Suppose we execute some valid1 SJava program M for a decision 1 If M itself does not compile, or does
not return a Boolean value, we treat it
as rejecting all input.

problem with input x. There are three possible outcomes:

1. accept: the program terminates and returns true, denoting “yes”,

2. reject: the program terminates and returns false, denoting “no”, or



string interpreter ( string program, string input) {
execState = initialExecState (program, input);
done = false;
while (not(done)) {

execState = singleStep(program, execState);
done = testIfHalted(execState );

}

# Program has halted, so execState is
# a string representing its return value.

return execState;
}

boolean testIfHalted(string execState) {
firstChar = execState [0];
if (firstChar == ‘(’) then {

return false ;
}
else {

return true;
}

}

string singleStep(string program, string execState) {
# code for single−step semantics goes here

}

string initialExecState ( string program, string input) {
# code for setting up initial execution state goes here

}

Figure 2: SJava interpreter skeleton
code.



3. the program never terminates; i.e., it reaches an infinite loop.
Definition A program M halts on an
input x if it either accepts or rejects that
input in finite time.

If the program M reaches outcome 1 or 2 for input x, where the
program terminates, we say that M halts on input x. We define the
set LM as the collection of all x accepted by M, i.e., such that M(x)
terminates and returns true.2We can think of LM as specifying a 2 The set LM of all input strings

accepted by M is often referred to
as the language of M.

decision problem solved by M: inputs where M returns true are
inputs where the answer to the decision problem is “true” or “yes,”
which belong in LM, and inputs where M returns false or doesn’t
return at all are inputs where the answer is “false” or “no,” which do
not belong in LM.

There are two definitions of interest to us, then, with respect to
these outcomes:

• recognizability: If the program M accepts all and only inputs
from LM—meaning outcome 1 is reached by M for input x if
and only if x ∈ LM—we say that M recognizes LM, or that LM

is a problem recognized by M. We can also consider a language
of strings L independent of a specific program, such as “the set
of all binary strings with an even number of 0s” or “the set of
all descriptions of a graph for which there exists a Hamiltonian
cycle.” We describe a language L as being recognizable if there
exists any program M for which M(x) returns true if and only if
x is in L. If x is not in L for some decision program M, M may
either return false (outcome 2) or never terminate (outcome 3).

• decidability: We say that M decides LM if M not only returns
true for all x in LM, but also returns false in finite time for all
x not in LM. In other words, M must make the correct decision
about whether x is in LM in finite time; it can never achieve
outcome 3 above. Just as a language is recognizable if there exists a
program that recognizes it, a language is decidable if there exists a
program that decides it. Note that decidability is a strictly stronger
requirement than recognizability; any program M that decides a
language also recognizes it, and any language L that is decidable
must also be recognizable.

We have encountered a wide variety of decidable problems so far
in this course. For instance, SAT (the Boolean satisfiability problem)
is NP-complete, but it is still decidable. We can show this by con-
struction: we can write a program that, given a formula, methodically
iterates through every single possible assignment of variables to
true or false to see if any assignment satisfies the given formula. If
the program finds a satisfying assignment, it outputs true; otherwise,
after iterating through all possible assignments, it outputs false.
In practice, we would never want to run this program for large n,



as for n different variables, it would take exponential time, O(2n),
before it would output false for an unsatisfiable formula. However,
exponential time is still finite, so this program still decides SAT.

When we prove a problem to be uncomputable, we specify one
of the definitions above which the problem does not satisfy. For
example, we might want to prove that a problem described by some
language L is undecidable, i.e., that there exists no program M that
can for any input x determine whether x is in L in finite time. Much
like in NP-completeness, for most undecidable problems, we prove
that they are undecidable using reductions: if we can reduce a known
undecidable problem to an unknown problem, then we can show
that unknown problem is also undecidable. However, just like in
NP-completeness, to use reductions, we need to bootstrap our set of
undecidable problems by proving a single problem is undecidable
without a reduction. For NP-completeness, that problem is SAT; for
uncomputability, that problem is the halting problem, which we will
get to in the next section.

7 Diagonalization and the halting problem

When first learning recursion in a programming class, you may
have accidentally written code that infinitely recursed, producing
a notorious “stack overflow” error. As your computer wound to a
halt, you may have wished that there were some way to have known
this would happen before the code ran. Wouldn’t it be great if there
were a program that, given the code for any program, M, and some
input to that program, x, would tell you whether or not M would
finish running on x in finite time?

This problem is called the halting problem, and we can write it out
formally as a language Lhalt: We use the notation 〈M, x〉 to refer to a

tuple of two strings. We can represent
these in one string by having a special
reserved character that we use to show
where one part of the input starts and
the next ends.

Lhalt = {〈M, x〉|M is a SJava program, and computing M(x) halts.}

We can first establish that this problem is recognizable: to prove
it, we can simply imagine a program H(M, x) that first executes
program M on input x and, after the program halts, returns true. We
can prove that this program H recognizes Lhalt by showing that it
returns true if and only if M halts on input x:

• if M’s execution halts on x, then H’s simulation of M’s execution
on x will also halt, and H will subsequently return true;

• if H returned true, then H must have finished simulating M
running on input x in finite time, implying that it halted.

Of course, recognizability does not really solve the problem we
are interested in: the case that a student learning recursion would be



interested in is not learning when a program will halt, but learning
when it won’t. Unfortunately for them and for us, however, Lhalt is
not decidable. To prove this, we will use a tool called diagonalization.

A quick tutorial on diagonalization

Diagonalization is a proof strategy that was first introduced by Georg
Cantor in 1873 for describing relative magnitudes of infinite sets. The
observation Cantor used was that, in order to show two different
sets were of the same size, one could use a matching argument: if
every single element of a set A is matched to exactly one element
from set B and vice-versa, then the sets must have the same number
of elements. This one-to-one matching, or bijection, can be extended
to sets of infinite sizes: for infinite A and B, if there is a bijection from
A to B, then A and B have the same cardinality of infinity.

Cantor used this to show that there were multiple cardinalities of
infinity. For instance, one cardinality is represented by countability,
where a set S is countable if there is a bijection from S to the natural
numbers N = 0, 1, 2, 3, . . . . Integers and all possible strings over a
fixed set of characters are countable: you can write a function that
enumerates every possible string (starting from the empty string ε,
‘a’, ‘b’, . . . , ‘aa’, ‘ab’, and so on) such that, given a string, you could
compute the finite index corresponding to that number.

However, real numbers are not countable. We construct a proof by
contradiction of this by iterating through an imagined enumeration
of real numbers and constructing an element that we show is not in
the enumeration of those reals. Suppose we had some enumeration
function real(n), where n is a positive natural number input and
real(n) outputs the nth real number in the enumeration starting from
n = 1. We will also write a helper function, digit(s, i), which returns
the ith digit after the decimal place of a real number s. Construct a
real number r as follows:

• r has no nonzero digits before the decimal point.

• r’s first digit after the decimal point is a digit in the range (1, 8) 3 3 We are using (1, 8) instead of (0, 9) to
avoid the problem where 0.999999 · · · =
1.00000 . . . . However, this still leaves
more than enough options to ensure
that we can choose a digit that does not
match digit(real(1), 1).

that is not the first digit after the decimal point for real(1); that is,
digit(r, 1) 6= digit(real(1), 1).

• r’s second digit is another digit in the range (1, 8) that is not equal
to the second digit of the second real number, or digit(real(2), 2).

• We continue to generate digits infinitely, with the ith digit of r
being some digit between 1 and 8 inclusive such that digit(r, i) 6=
digit(real(i), i).



number digits 1 2 3 4 5 6

real(1) 0. 2 1 2 5 6 7 . . .
real(2) 12. 6 3 3 3 6 7 . . .
real(3) 1. 5 0 0 0 0 0 . . .
real(4) -5. 9 8 1 4 4 8 . . .
. . .
r 0. 3 4 1 5 . . .

Table 2: How we choose digits for
assembling r based on a function real
enumerating real numbers. Notice
how we specifically differentiate
each digit of r from a digit on the
diagonal produced by aligning the real
numbers—hence, diagonalization.

Consider the real number r produced this way. We know from
the way it is constructed that it cannot equal any enumerated real
number produced by real, as for any output real(n), r will differ
from it by at least the nth digit. We also know it is a real number,
as it can be represented using a decimal representation, even if that
representation is infinite. Thus, for any possible enumerative function
real, we can construct a real number that it will never produce,
implying that no such valid enumeration function could exist. This
disproves the possibility of a bijection existing between the natural
numbers and real numbers, and thus shows that the real numbers are
not countable.

This argument relies on constructing r to differ explicitly from
every single thing in our infinite list. The specific different element Definition Diagonalization is a proof

argument structure that shows that a
set of elements cannot be enumerated
by supposing the existence of an
enumerated list of the elements from
the set, then constructing some element
that should be on that list but explicitly
differs from every element in the list.

we use comes from the “diagonal” of the list: we differ from number
i at the ith digit, and so on. We use this intuition to describe a style
of proof argument called diagonalization, in which we argue that
we cannot make a comprehensive list of some set of things (e.g.,
the real numbers) by constructing an element that should belong in
such a list, but would explicitly differ from every other element in
that comprehensive list of things (e.g., r). We can use this same kind
of construction in the case of the halting problem to construct an
adversarial program, diagonalizer, that makes it impossible for a
hypothetical program that decides the halting problem, haltChecker,
to work. Next, we show the proof by contradiction that does this.

Proving the halting problem undecidable

Now we prove the primary result of this section: that the halting
problem is undecidable.

Theorem 1 (Undecidability of the Halting Problem.). Consider the
following decision problem that takes as input program M and input to the
program x:

Lhalt = {〈M, x〉|M is a SJava program, and computing M(x) halts.}

This problem, called the halting problem, is undecidable.



Proof. We know if a language is decidable, then there exists some
program that actually decides it. So, let’s assume we have access to
that program, haltChecker with the following specifications:

• Arguments: haltChecker takes in two arguments: program, the
source code for a SJava program, and input, the input that should
be fed to the SJava program.

• Output: For any possible program and input, HaltChecker will
output in finite time whether the execution of program(input) will
complete in finite time (either true or false).

Now, we will construct an additional program that uses haltChecker

as a subroutine. This program is going to force haltChecker to
contradict itself. Let’s call this program diagonalizer. We show
its source code in Figure 3.

The base function of diagonalizer takes in only one string as
an argument: the code of a program program. The method uses
haltChecker to check if program halts when fed its own source code as
input.4 If haltChecker(program, program) returns true, meaning the 4 This might seem like a nonsense input

for most programs, but if the code
either fails to validate the input or
throws some kind of error, we can still
treat that as giving a false return value
in finite time.

program would halt, then we will make the diagonalizer program
go into an infinite loop by calling a function runForever that recur-
sively calls itself ad infinitum. However, if haltChecker(program,program)
returns false, meaning the program would not halt, then we will tell
our diagonalizer program to immediately return true and halt.

Just like how we constructed a real number different from any
other possible real number in our list, diagonalizer explicitly be-
haves differently from each other program M on at least one input:
the source code corresponding to that M. This relies on the count-
ability of strings from before: we can enumerate every possible string
input, and for each input, also try to treat that same input as a source
code M. If some M does not have valid source code, then we may
instantly halt and reject when trying to simulate M. This is enough
for the diagonalizer: no matter the reason M halts when fed its own
source code, whether it failed to compile M or immediately accepts
the input M, the diagonalizer will take this predicted true outcome
from haltChecker(M, M) and proceed to loop infinitely.

If M halts on itself, the diagonalizer will not halt; if M does
not halt on itself, diagonalizer will halt. Now comes the weird
part. What happens if we feed our halt-checking program two
copies of the source code of diagonalizer? This would require
the diagonalizer to differ from itself: because diagonalizer is a
valid program if haltChecker exists, it must disagree with itself
when fed its own source code as input. This is enough to produce
a contradiction — this haltChecker cannot be part of a program.



boolean diagonalizer(string program) {
if (haltChecker(program,program)) {

return runForever();
}
else {

return true;
}

}

boolean runForever() {
return runForever();

}

boolean haltChecker(string program, string input) {
#
# body of haltChecker goes here
#

}

#
# additional functions used by haltChecker, if any, go here
#

Figure 3: Skeleton code for
diagonalizer. Everything
beginning with the line boolean

haltChecker(string program,

string input) is the source code of
haltChecker itself.

We can dig more deeply into where a contradiction arises (assum-
ing existence of haltChecker) by looking at what must happen in
execution: if outsidehaltChecker is identical to haltChecker and
string diagonalizerCode is the code for diagonalizer, we could
define the boolean out as:

boolean out = outsidehaltChecker(diagonalizerCode, diagonalizerCode);

After this line executes, what does the variable out equal?

• Suppose out is true. This implies that the diagonalizer halts
when fed its own source code. However, this only happens if
haltChecker returned false inside the diagonalizer. This indi-
cates that the two haltCheckers, haltChecker and outsidehaltChecker,
disagreed on the same inputs, two copies of diagonalizerCode:
haltChecker thought that diagonalizer would not halt, but
outsidehaltChecker did. This is a contradiction, so outsidehaltChecker

could not have returned true.

• Suppose out instead is false. This implies the opposite of before,
that the diagonalizer would not halt when fed its own source
code. However, this infinite loop only happens if haltChecker
returned true. This again implies that the two haltCheckers,
haltChecker and outsidehaltChecker, disagreed on the same



inputs. haltChecker thought that diagonalizer would halt,
but outsidehaltChecker did not. Because of this contradiction,
outsidehaltChecker could not have returned false, either.

In effect, we have shown that there is no possible way for a hy-
pothetical haltChecker to give a correct answer about whether
diagonalizer would halt if fed its own source code. However, we
said haltChecker decided this problem: for it to do so, it must be able
to return a correct answer for any program in finite time, even our
adversarial diagonalizer! So, no such haltChecker can exist. And,
if no program can exist to decide the halting problem Lhalt, then
Lhalt is undecidable.

8 Uncomputability via reduction

The proof that the halting problem is uncomputable relies on a cool
diagonalization that allows us to “trick” our imaginary halt-checker
into contradicting itself. However, constructing this adversarial
example is a little complex and confusing. Instead, as in many other
places in algorithmic analysis, we often use reductions to prove that
problems are uncomputable. Much like when we prove a problem
NP-hard, we can use a reduction to show that a program that decides
Lnew could be used as a subroutine to decide something we know is
undecidable (e.g., Lhalt, the halting problem). The direction of this
is important: when we reduce Lhalt to Lnew, we show that if Lnew

were decidable, it would make the impossible possible. We use the
notation Lhalt ≤ Lnew to indicate that Lhalt is “at least as easy as”
Lnew. This means is Lhalt is impossible to decide, then Lnew must
be “at least” impossible.

Let’s take as an initial problem one very similar in description
to the halting problem, the acceptance problem. This problem has the
same inputs as the halting problem, a program M and an input x,
but instead asks: does this program accept this input? Unsurprisingly,
given how close this problem sounds to the halting problem, the
acceptance problem is also undecidable, which we will prove below.

Theorem 2 (Undecidability of the Acceptance Problem.). Consider the
following decision problem that takes as input a program M, and an input to
the program x:

Laccept = {〈M, x〉|M is a SJava program, x is a string input, and M(x) returns true.}

This problem, called the acceptance problem, is undecidable.

It is totally possible to recreate the diagonalization argument for
this problem to prove it is uncomputable. However, we will use



a much simpler strategy: we will reduce the problem we already
know is undecidable, the halting problem, to our new problem,
the acceptance problem. In other words, we show that if we had a
decider for the acceptance program, we could program a decider for
the halting problem. This implies a contradiction: a decider for the
halting problem cannot exist, so a decider for the acceptance problem
could not exist, either.

Proof. Suppose we have some program acceptanceChecker that de-
cides the acceptance problem. We can write a haltChecker program
as follows: for any input program M to the haltChecker, we first
create a slightly modified version of this program M′(x) that first
calls M(x), then returns true after M(x) finishes no matter what
it returned. See Figure 5 for source code of M′. haltChecker then
passes the source code of M′ and x to the acceptanceChecker. Figure
4 shows source code of haltChecker.

• If the acceptanceChecker returns true, then we know M(x) halted:
otherwise, we would not ever reach the point where M′ returns.

• If the acceptanceChecker returns false, then we know the program
M never halted on its input, as otherwise M′ would have returned
true and thus accepted x.

These two bullet points establish that the haltChecker program in
Figure 4 decides Lhalt, assuming that acceptanceChecker decides
Laccept. In other words, Lhalt ≤ Laccept. Since there is no algorithm
to decide the halting problem, there can be no algorithm to decide
the acceptance problem.

Remark 1. In the above proof, we required modifying the source
code of M to get a program M′ which has a new function as its main
function. It is important to ensure that the name of this function is
distinct from the function names appearing in M. Since given the
string that corresponds to M, we can extract the function names
appearing in M, one easy way of ensuring the new function has a
distinct name is by just concatenating the function names appearing
in M, and using this as the main function of M′.

As another example, consider what looks like a simpler problem:
we can’t tell if a program halts, but can we tell if it at least accepts
the input 0? We describe L0 as the set of programs (represented by
their source code) that will return true for the input 0. We will show
that even this simple condition is undecidable: no program exists that
can determine in finite time for all programs whether or not they will
accept 0.



boolean haltChecker(string M, string x) {
M’=modify(M);
return acceptanceChecker(M’,x);

}

string modify(string M) {
# modify string M to string M’ such that
# M’ corresponds to the code in Figure 5.

}

boolean acceptanceChecker(string program, string input) {
#
# body of acceptanceChecker goes here
#

}

#
# additional functions used by acceptanceChecker, if any, go here
#

Figure 4: Skeleton code for
haltChecker. Everything
beginning with the line boolean

acceptanceChecker(string M,

string x) is the source code of
acceptanceChecker itself.

boolean distinct ( string w) {
a = main(w); #assuming main is the first function of M
return true;

}

#
# code for M goes here
#

Figure 5: Skeleton code for M’ where
distinct is a function name that does
not appear in the code of M.



Theorem 3 (Undecidability of the Zero-Input Problem.). Consider the
following decision problem that takes as input program M:

L0 = {〈M〉|M is a SJava program, and M(0) returns true.}

This problem is undecidable.

Proof. We will suppose there exists a program zeroChecker that
takes in the source code for a program and returns true if that
program accepts the input 0, otherwise false. We are going to use
this program to create a halt checker as follows: haltChecker on
being given as input the code of a program M and input x does the
following:

• writes the code of a program M′ that on input w has the following
behavior: if w = 0, it uses the universal SJava program to simulate
M on x. If M halts and produces an output, M′ ignores it and
outputs true. If w 6= 0, it outputs false (and halts).

• supplies the code of M′ as input to zeroChecker, and returns the
output of zeroChecker.

The source code of haltChecker is supplied in Figure 6.
To prove correctness of the haltChecker, suppose that M halts on

x. Then clearly M′ on input 0 outputs true, and thus zeroChecker

outputs true as well when supplied with the code of M′ as input.
Now suppose M does not halt on x. Then, M′ on input 0 does

not halt as well and thus M′ does not accept 0 in this case. Hence
zeroChecker outputs false on being given the code of M′ as input.
This concludes the proof that haltChecker indeed decides Lhalt

correctly, assuming zeroChecker decides L0 correctly. Since the
halting problem is undecidable, it must be the case that zeroChecker
does not decide L0 correctly, i.e. L0 is undecidable.

9 Rice’s Theorem

The program that we showed could not exist above, zeroChecker, is
performing a particular type of check: it takes in the source code of a
program, and decides something about what inputs that program ac-
cepts or rejects. This is an important distinction from other questions
we could ask about an input program, like whether the program
itself contains a for loop, or whether it takes more than 10 steps to
process the input 0. These two questions are about the content of the
input program and how the program would be executed, and they
are decidable: we can write a program that looks for the syntax of a



boolean haltChecker(string M, string x) {
M’= zerofocus(M,x);
return zeroChecker(M’);

}

string zerofocus(string M, string x) {
# return a string that corresponds to the code of the program
# given in Figure 7.

}

boolean zeroChecker(string program) {
#
# body of zeroChecker goes here
#

}

#
# additional functions used by zeroChecker, if any, go here
#

Figure 6: Skeleton code for
haltChecker.

boolean distinct ( string w) {
if (w == ‘‘0’’) {

a = interpreter (M,x);
return true;

}
return false ;

}

#
# code for interpreter (see Figure 2) goes here
#

Figure 7: Skeleton code for M’ where
distinct is a function name that does
not appear in the code of M.



for loop or that executes the first ten steps of a program to see if it
halts.

However, the zeroChecker is looking at properties of the language
accepted by an input program. Because zeroChecker is checking
something about the final behavior of the program, whether it
accepts or rejects a specific input regardless of the execution up until
that point, it is possible to turn it into a halt-checker by wrapping
an arbitrary program in code that matches the specific condition
zeroChecker cares about. We call a property of the language that a
program M accepts a semantic property of of the program, distinguish-
ing it from properties that consider the program itself, and not the
language the program accepts.

In fact, there is nothing special about checking if 0 is in the lan-
guage accepted, we can make the same argument for any nontrivial
property of the language that a program accepts. We say that a prop-
erty of the language is nontrivial if there are languages that satisfy
the property, and there are also languages that do not satisfy this
property. For example, whether 0 is in the language is a nontrivial
property, some languages contain 0 and others do not. This result is
called Rice’s Theorem after Henry Gordon Rice, who published this
result in 1951.

Theorem 4 (Rice’s Theorem). Take L to be a semantic property of pro-
grams, i.e., one where the membership of a program M in L is determined
by some condition on which inputs M accepts. If L is not vacuously true or
false for all programs, then it is undecidable.

Proof. To prove this, we will generalize the intuition we used for
zeroChecker: to an arbitrary decision problem Li that is nontrivial,
i.e. for which there is at least one program A that is in Li and at
least one program A′ that is not in Li. More specifically, we will
assume the program A′ not in Li is the program that loops infinitely
for all inputs, therefore not accepting any input. We can assume
this because, if this program was in Li, we could simply prove the
undecidability of the complement of Li instead, using the method
we will describe. We can do this because the complement of an
undecidable language is also undecidable.5 5 If the complement were decidable,

one could simply negate the output of
the program that decided it to produce
a program that decided the original
program.

Suppose by way of contradiction that we have some general
program, propertyChecker, that decides whether or not a property
holds for some input program M. That is, propertyChecker(M)

will return true if M is in Li, and false if M is not in Li in finite
time. We want to describe a way to turn an arbitrary input to the
halting problem of program and input 〈M, x〉 into an input that
propertyChecker can decide.

We therefore use the following protocol to make a hypothesized



haltChecker(M, x): first, we generate the source code for a program
M′(y) that does the following:
• Executes program M the corresponding input x,
• If M halts on x, then execute program A on this y, and return the

result.
Note that M′ is specified for a particular M and x; you can think of
these as “magic numbers” or constants in the code that is written
out based on the halting problem. Writing this code itself takes
finite time; it is a deterministic modification of the existing source
code given A and A′. After constructing the source code for M′, the
HaltChecker will feed M′ to propertyChecker and output the result.
See Figure 8 for a skeleton code of M′.

We can show that if propertyChecker decides the property Li,
then this program will decide the halting problem:
• If M halts on input x, then M′ will respond exactly like A for all

inputs. By definition, this means the program is in Li. propertyChecker(M′)
therefore must return true.

• If M does not halt on input x, then M′ will not halt on any input.
This means the program will behave like A′, the program that
halts on no inputs, which is not in Li. propertyChecker(M′)
therefore must return false.
The program sketched above for haltChecker never executes M or

M′. Instead, it relies only on the existence of a program propertyChecker

that decides Li, i.e., that always returns a result in finite time. Be-
cause a program that decides Lhalt cannot exist, we arrive at a
contradiction, implying that no such propertyChecker program can
exist. This is sufficient to show that Li for an arbitrary semantic
property is undecidable.

Rice’s Theorem is a powerful tool for proving undecidability:
it takes the structure of the proof we used to reduce the halting
problem to zeroChecker, and generalizes it to any nontrivial property
of a problem space. However, it is important to remember that this is
limited to properties that only look at the output. If propertyChecker
were to measure some other property about how M′ is executed on
input y, it might not consider M′ to behave equivalently to A or A′.



boolean haltChecker(string M, string x) {
M’= propertyfocus(M,x);
return propertyChecker(M’);

}

string propertyfocus(string M, string x) {
# return a string that corresponds to the code of the program
# given in Figure 9.

}

boolean propertyChecker(string program) {
#
# body of propertyChecker goes here
#

}

#
# additional functions used by propertyChecker, if any, go here
#

Figure 8: Skeleton code for
haltChecker.

boolean distinct ( string y) {

a = interpreter (M,x);
return main(y); #assuming main is the first

#function of program A

}

#
# code for interpreter (see Figure 2) goes here
#

#
# code for A goes here
#

Figure 9: Skeleton code for M’ where
distinct is a function name that does
not appear in the code of M.



10 Proving a problem is not recognizable

We have seen how to prove a problem L is undecidable by reducing
Lhalt to L. In this section we will see how to prove a problem is not
even recognizable, by reducing from the complement of the halting
problem. The reason this works is that the complement of the halting
problem is not recognizable. More concretely, there is no algorithm
that, given as an input a pair 〈M, x〉, accepts the input if and only if
M never halts on input x.

Theorem 5 (The co-halting problem is not recognizable.). Let Lco-halt

denote the complement of the halting problem, i.e. the set of all pairs 〈M, x〉
such that M never halts on input x. The language Lco-halt is not recogniz-
able.

Proof. Consider any program antiHaltChecker that computes a
Boolean function of two strings. We will prove that antiHaltChecker
fails to recognize Lco-halt, by building another program called
diagonalizer2 using the code for antiHaltChecker. The construc-
tion is shown in Figure 10 and is very similar to the diagonalizer
developed in Figure 3 when we proved that the halting problem is
undecidable.

boolean diagonalizer2(string program) {
if (antiHaltChecker(program,program)) {

return true;
}
else {

return runForever();
}

}

boolean runForever() {
return runForever();

}

boolean antiHaltChecker(string program, string input) {
#
# body of haltChecker goes here
#

}

#
# additional functions used by antiHaltChecker, if any, go here
#

Figure 10: Skeleton code for
diagonalizer2. Everything
beginning with the line boolean

antiHaltChecker(string program,

string input) is the source code of
antiHaltChecker itself.

Let progDiag2 denote a string constituting the code for the diagonalizer2

program. Consider what happens when one calls the function antiHaltChecker(progDiag2,progDiag2).



There are two cases.

1. If antiHaltChecker(progDiag2,progDiag2) returns true, then
according to the code for the diagonalizer2 program, it will
return true on input string progDiag2. In particular, this means
that the program encoded by the string progDiag2 halts on input
progDiag2, i.e. the pair 〈progDiag2, progDiag2〉 does not belong
to Lco-halt. Thus, antiHaltChecker fails to recognize Lco-halt

because it accepts the pair 〈progDiag2, progDiag2〉.

2. If antiHaltChecker(progDiag2,progDiag2) returns false, or if
it runs forever without terminating, then according to the code
for the diagonalizer2 program, it will run forever on input
string progDiag2. In particular, this means that the program
encoded by the string progDiag2 does not halt on input progDiag2,
i.e. the pair 〈progDiag2, progDiag2〉 belongs to Lco-halt. Thus,
antiHaltChecker fails to recognize Lco-halt because it does not
accept the pair 〈progDiag2, progDiag2〉.

In both cases antiHaltChecker fails to recognize Lco-halt. Since
antiHaltChecker was an arbitrary program that computes a Boolean
function of two strings, this confirms that there is no program that
recognizes Lco-halt.

To illustrate the process of proving that another language is not
recognizable, by reducing from Lco-halt, we present the following
theorem.

Theorem 6. Let

Linf = {〈M〉 | M is a SJava program that accepts infinitely many distinct inputs}.

The language Linf is not recognizable.

Proof. As promised, we will prove this theorem by showing that
Lco-halt ≤ Linf. In other words, given an SJava program that
accepts the language Linf we will produce an SJava program that
accepts the language Lco-halt. Equivalently, we assume we are
given a SJava program that, on input M′, halts and outputs true
if and only if M′ is a SJava program that accepts infinitely many
distinct inputs. We want to use this as a subroutine in a program
that accepts some other pair 〈M, x〉 if and only if M does not halt
on input x. Hence, the essential question we must ask ourselves
is: how can the fact that one program accepts infinitely many different
inputs constitute evidence that another program never halts when it runs
on a specified input? As one ponders this question an elegant answer
begins to take shape: for a given pair 〈M, x〉 suppose that M′ is a
program which accepts its input string y if and only if M runs for



more than length(y) steps when processing input x. If the execution
of M on input x terminates after a finite number of steps, t, then M′

accepts only strings of length less than t, so the number of distinct
strings that M′ accepts is finite. If M never halts on input x then
M′ accepts every string, so the number of distinct strings that M′

accepts is infinite. We have shown that M′ ∈ Linf if and only if
〈M, x〉 ∈ Lco-halt, indicating that the transformation from 〈M, x〉
to M′ is indeed a correct reduction from recognizing Lco-halt to
recognizing Linf. The only thing that remains is to prove that the
reduction itself — i.e., the function mapping the pair 〈M, x〉 to the
program M′ — is a computable function. To substantiate this, we use
the code in Figure 12. The code makes use of four functions. One
of these is called infiniteChecker is assumed to be a program that
recognizes Linf. The other three perform string-processing tasks that
are, in principle, easy to implement in SJava so we omit the code for
these string processing routines.

1. substitute takes three strings x, y, z and transforms x by replac-
ing the first occurrence of substring y in x (if any) with string z.

2. universalSJavaProgram is a function that takes no arguments and
outputs a gigantic string constituting the universal SJava program.

3. bigString is a function that takes no arguments and outputs a
string which is equal to the piece of code in Figure 11.

boolean compareLengthToRunningTime(string y) {
prog = ‘‘SUBST_PROG’’;
execState = initialExecState (prog,SUBST_INPUT);
countdown = length(y);
done = (countdown == 0);
while (!done) {

execState = singleStep(prog,execState);
countdown = countdown − 1;
done = (testIfHalted(execState)) || (countdown == 0);

}
return ! testIfHalted (execState );

}

SUBST_USJP

Figure 11: String to be output by
bigString() function.



boolean antiHaltChecker(string program, string input) {
universalProg = universalSJavaProgram();
tempString1 = bigString();
tempString2 = substitute(tempString1,‘‘SUBST_PROG’’,program);
tempString3 = substitute(tempString2,‘‘SUBST_INPUT’’,input);
Mprime = substitute(tempString3,‘‘SUBST_USJP’’,universalProg);
return infiniteChecker(Mprime);

}

string substitute (string template, string macro, string replacement) {
#
# body of substitute goes here.
#

}

string universalSJavaProgram() {
# simply return the code of the universal SJava program.

}

string bigString() {
# simply return the big string specifying the template of the reduction.

}

boolean infiniteChecker(string prog) {
#
# body of infiniteChecker goes here.
#

}

#
# additional functions used by infiniteChecker go here.
#

Figure 12: Skeleton code for reduction
from Lco-halt to Linf .



11 Cook-Levin Theorem

As an application to our definition of computation using Turing
Machines, we can prove that SAT is NP-complete. Recall that we
have been using SAT as our “first” NP-complete problem, and
showed other problems NP-complete by reductions from SAT. We
still need a proof that SAT is actually NP-complete.

Theorem 7 (Cook-Levin Theorem). SAT is NP-complete.

Proof. We know that SAT is in NP. To prove that SAT is NP-complete,
we need to show that for any other problem L in NP, L ≤P SAT,
where we use ≤P to denote the polynomial time reductions we used
for proving problems NP-complete.6 6 We use ≤P to distinguish polynomial-

time reductions from the ≤ reduction
used for general computability.

Because the problem L is in NP, we know there exists a poly-
nomial time verification algorithm for the problem, an algorithm
Checker that takes two inputs x and y with |y| ≤ |x|` for some know
constant `. The algorithm Checker satisfies the following

• For any input x, if x ∈ L, then there exists a y with |y| ≤ |x|` such
that Checker(x, y) accepts in time at most O(|x|k) for constants `

and k.

• For any input x, if x 6∈ L, then for any input y, Checker(x, y) rejects
in time at most O(|x|k) for constant k.

As a first step in our proof, we replace the algorithm Checker with
a single tape Turing Machine, CheckerTM. Indeed this is possible by
application of the Church-Turing hypothesis (discussed in Section 2).
This change in the form of computation can increase the running
time of the CheckerTM. We will assume that the running time is
bounded by at most T = a|x|c for constants a and c. Note that in
T time, the Turing machine can use at most the first T positions on
the tape.

Now we area ready to show that L ≤P SAT. To define the SAT
problem, we start by defining a large number of variables.

• We use a variable ξi,t,σ for each position 1 ≤ i ≤ T of the tape, each
time step 1 ≤ t ≤ T, and each symbol σ ∈ Σ. The idea here is
that we will set ξi,t,σ = True if and only if at time t, the character
M[i] has value σ. It is enough to consider the first first T positions
of the tape, as in T steps the Turing machine will not get to further
away positions.

• We set a variable νt,i for each position 1 ≤ i ≤ T of the tape. For
each time step 1 ≤ t ≤ T, νt,i will be True if the head is in position
i at time t and False otherwise.



• We set a variable ζt,q for each state q ∈ K and each time step
1 ≤ t ≤ T, which will be True if the state of the machine at time t
is q and False otherwise.

Note that the number of variables is is polynomial: we have at most
T2|Σ| variables of the type ξi,t,σ,at most T2 of the type νt,i, and at
most T|Q| variables of the type ζt,q. This is polynomial in T (as |Q|
and |Σ| are constants), and T is polynomial in the input size.

Next, we need to encode as a SAT formula the rules that make
this a valid accepting computation of CheckerTM. While we will not
provide the exact formalization of every clause that must be made,
we will list all the issues that need to be encoded as clauses, with an
outline of how to do this:

• To encode that the Turing machine accepts in time at most T, we
need one single variable clause ζT,a, representing that at the final
time T the machine is in the acceptance state a.

• To encode that the first part of the input is x, we need a set of
single variable clauses ∧1≤i≤nξi,1,xi . This restriction stops before
the rest of the tape, as that is where the second input y will come.
We will produce similar clauses to enforce that y directly follows x
and takes no more than n` space on the tape, and that after y, the
tape is blank.

• To encode the start configuration of the Turing machine, we also
need two single-variable clauses ζ1,s ∧ ν1,0, showing we start at the
start state in the 0th position of the tape.

• We need clauses that make sure that exactly one of the ζt,q vari-
ables is True at any time (i.e. the machine has only one state at a
time). To express this, we need ∨qζt,q for all times t, saying that
the head is in at least one state. Further, for all pairs p 6= q we
need (ζt,p ∨ ζt,q). These clauses say that two states or two positions
cannot be True at the same time step.

• Similarly, we need clauses that make sure at each time, and each
tape position there is exactly one character written, as well as
clauses that make sure that the head is in exactly one position at
each time step. These get expressed using variables ξi,t,σ and νt,i

similarly to how we expressed that exactly one of the ζt,q variables
is 1 at each time.

• Finally, we need to encode that this is a valid computation:

– For any location where the head isn’t pointed at time t (that
is, νt,i = 0), the character written there doesn’t change, so



νt,i = 0 ⇒ ξi,t,σ = ξi,t+1,σ, which is expressed as the two clauses
(νt,i ∨ ξi,t,σ ∨ ξ i,t+1,σ) ∧ (νt,i ∨ ξ i,t,σ ∨ ξi,t+1,σ).

– For a location where the head is pointed at time t, the move-
ment of the head, change of state, and symbol written should
all match the δ function of the Turing machine. This requires a
rather elaborate set of clauses to encode these, so we omit them
here for brevity.

With the encoding claimed above, the Turing machine CheckerTM

proves that an input x is in L, if and only if the SAT formula so
created is satisfiable, showing that L ≤p SAT.

References

Michael George. Lecture 9: Countability. In
CS2800 Lecture Notes. Cornell University, 2018.
https://courses.cs.cornell.edu/cs2800/wiki/index.php/SP18:Lecture_9_Countability.

Robert D. Kleinberg. Notes on Turing machines.
In CS4820 Lecture Notes. Cornell University, 2018.
http://www.cs.cornell.edu/courses/cs4820/2018sp/handouts/turingm.pdf.

Dexter Kozen. Automata and Computability. Springer-Verlag, New
York, 1997.

Andrew Myers. Hard and incomputable problems.
In CS2112 Lecture Notes. Cornell University, 2015.
http://www.cs.cornell.edu/courses/cs2112/2015fa/lectures/lecture.html?id=undecidability.

William J. Rapaport. The Boehm-Jacopini theorem and struc-
tured programming. In CSE 111 Lecture Notes. University
of Buffalo Dept. of Computer Science and Engineering, 2004.
https://cse.buffalo.edu/ rapaport/111F04/greatidea3.html.

Steven Zeil. Turing completeness. In CS390
Lecture Notes. Old Dominion University, 2016.
https://www.cs.odu.edu/ zeil/cs390/latest/Public/turing-
complete/index.html.


	What is computability?
	Models of computation and the Church-Turing thesis
	Turing machines
	SJava: a simplified Java-like syntax for expressing algorithms
	The universal SJava program
	Formalizing uncomputability
	Diagonalization and the halting problem
	Uncomputability via reduction
	Rice's Theorem
	Proving a problem is not recognizable
	Cook-Levin Theorem

