
Introduction to Algorithms Introduction to Approximation and Online Algorithms
CS 4820 Spring 2016 by Éva Tardos

In some situation finding approximately optimal solution to a maximization or minimization problem
is good enough in the application. This may be useful if we either lack all the information as we have
to make decisions (online algorithms) or we don’t have the time to find a fully optimal solution (say
as the problem is too hard). In the remaining part of the course, we will explore algorithms for such
situations.

1 Knapsack

First we consider the Knapsack problem. This problem is given by n items each with a weight wi and
value vi, and a maximum allowed weight W . The problem is to selected a subset I of items of maximum
total value

∑
i∈I vi whose total weight

∑
i∈I wi ≤W is at most the weight given.

First notice that the Subset Sum problem is a special case of this problem, when vi = wi for all i,
and we ask the question if these is a subset with total value (and hence weight) at least W . This shows
that Knapsack is NP-hard, at least as hard as an NP-complete problem (not NP-complete, as its an
optimization problem, and hence not in NP).

Here we give a simple 2-approximation algorithm for the problem. See also Section 11.8 of the book
that we’ll cover later that gives a much better approximation algorithm. Our simple approximation
algorithm will be a form of greedy algorithm. We will consider two greedy ideas. For both algorithms,
we first delete all items with weight wi > W as they cannot be considered by any solution.

(a) Consider items in order of their value, and add to the set I till the weight is not exceeded.

While this algorithm is natural, it is also easy to give a very bad example for this. Say one item has
eight wn = W and value vn = W , and many small items of value vi = W − 1 and weight wi = 1. The
item of maximum value is item n which alone fills the knapsack. However, by taking many of the other
items, we can take as many as min(n− 1,W) items each of value vi = (W − 1) reaching a much higher
total value.

This leads us to a different greedy idea: we should consider the density of value in each item
di = vi/wi. Our second greedy algorithm considers items in this order

(b) Consider items in order of their value density di, and add to the set I till the weight is not
exceeded.

W

𝑤𝑖

𝑑𝑖

The process can we well represented by a figure, if we have the items each represented by a box of
length wi and height di where now the area of the box is widi = vi is its value. Items are added to the
knapsack in the order decreasing density, as suggested by the figure, where the orange item hanging out
on the right of the W size knapsack is the first item that didn’t fit into the knapsack.

Unfortunately, this greedy algorithm can also be very bad. For an example of this situation, all we
need is two items w1 = v1 = W , while v2 = 1 + ε and w2 = 1. Now item 1 has density d1 = 1, while
item 2 has density d2 = 1 + ε. However, after fitting item 2 in the knapsack, item 1 no longer fits! So
we end up with a total value of value 1 + ε, while value W was also possible.

Interestingly, the better of the two greedy algorithm is a good approximation algorithm.

Claim. Running both (a) and (b) greedy algorithm above, and taking the solution of higher value
is a 2-approximation algorithm, finding a solution to the knapsack problem with at least 1/2 of the
maximum possible value.

Proof. Consider the two greedy algorithms, and let Va and Vb the value achieved by greedy algorithms
(a) and (b) respectively, and let Opt denote the maximum possible value. For algorithm (b) let I be
the set of items packed into the knapsack, and let j be the first item that didn’t fit into the knapsack
(the orange item in the example). Clearly

∑
i∈I vi = Vb and vj ≤ Va, as algorithm (a) starts by taking

the single item of maximum value.
I tricky part in thinking about approximation algorithms is how we can compare our solution to the

optimum value, without being able having to compute it (as it is NP-hard to compute the optimum
value). We’ll show below that

∑
i∈I vi + vj ≥ Opt, implying that Va + Vb ≥ Opt, so the larger of Va and

Vb must be at least 1/2 of OPT.

Claim. Using the notation from algorithm (b) above,
∑

i∈I vi + vj ≥ Opt.

Proof. The main observation is that if we could cut a part of the last item so as to exactly fill the
knapsack, that would clearly be the optimum solution if taking a partial item was allowed: it uses all
items of density > dj and fills the remaining part of the knapsack with value density dj , and all items
not fully included have density ≤ dj . This shows that the optimum value is for the case when we are
allowing cutting an item is

∑
i∈I vi plus a fraction of the last item. The true optimum, if cutting items

not not permitted, can only be smaller, so we get
∑

i∈I vi + vj ≥ Opt as claimed. NP

	Knapsack

