
1 coNP and good characterizations

In these lecture notes we discuss a complexity class called coNP and its relationship to P
and NP. This discussion will lead to an interesting notion of “good characterizations” for
problems, which plays an important role in algorithm design.

1.1 coNP

One property of the definition of NP is that YES and NO instances are not treated
symmetrically. This asymmetry motivates the definition of coNP.

Definition.

coNP =
{
L | L ∈ NP

}
(1)

Here, L = {0, 1}∗ \ L is the set-theoretic complement of a language L ⊆ {0, 1}∗. The
language L represents the same decision problem as L except with all answers flipped.
(NO instances in L are YES instance in L and the other way around.)

Example. Recall that SAT is the problem of deciding if a Boolean formulaϕ is satisfiable.
As a language,

SAT = {x ∈ {0, 1}∗ | ϕx is satisfiable}. (2)

(Here, ϕx denotes the Boolean formula encoded by the string x.) We know that
SAT ∈ NP. Therefore, the complementary problem satisfies SAT ∈ coNP, where

SAT = {x ∈ {0, 1}∗ | ϕx is not satisfiable}. (3)

A Boolean formula ϕ is called tautology if every assignment satisfies ϕ. The following
problem is also in coNP,

TAUT = {x ∈ {0, 1}∗ | ϕx is a tautology}. (4)

This problem is essentially the same as SAT because a formula is not satisfiable if and
only if its negation is a tautology.

1.2 Polynomial-time refuters

Similar to NP’s definition in terms of polynomial-time verifiers, coNP has a definition in
terms of polynomial-time refuters.

Lemma. A language L ⊆ {0, 1}∗ satisfies L ∈ coNP if and only if there exists a
polynomial-time Turing machine R and a polynomial function p : N→N such that
for every x ∈ {0, 1}∗,

x < L⇔ ∃u ∈ {0, 1}p(|x|).R(x,u) = 0 . (5)

We say that a Turing machine R as in the lemma above is a polynomial-time refuter for L.
For x ∈ {0, 1}∗, we refer to strings u ∈ {0, 1}p(|x|) with R(x,u) = 0 as refutations of the question

1

“x ∈ L?”. (This notion of refutation for coNP is analogous to the notion of proof/certificate
for NP.)

1.3 Short proofs and refutations

With the above terminology we can succinctly describe NP, coNP, and their intersection
NP ∩ coNP:

L ∈ NP: every YES instance of L has a polynomial-length proof of “x ∈ L?”.
L ∈ coNP: every NO instance of L has a polynomial-length refutation of “x ∈ L?”.
L∈NP∩coNP: every instance either has a polynomial-length proof or a polynomial-length

refutation of “x ∈ L?”.

1.4 NP vs coNP

The classes NP and coNP are widely believed to be different, which means that there exist
problems such that YES instances have short proofs but NO instances do not necessarily
have short refutations.

Conjecture. NP , coNP.

The following lemma shows that proving this conjecture would also prove that P , NP.

Lemma. If NP , coNP then P , NP.

Proof. If a language L ⊆ {0, 1}∗ has a polynomial-time algorithm, then we can also decide
L in polynomial time. Therefore, P = NP also implies that P = coNP.

The following lemma shows that NP-complete problems cannot have polynomial-length
refutations unless NP = coNP.

Lemma. If NP , coNP, then SAT < coNP.

1.5 Efficient algorithms vs good characterizations

We say that languages L ∈ NP ∩ coNP have a good characterization (that is, L has both short
proofs and short refutations). Note that P ⊆ NP∩coNP. Therefore, a good characterization
is necessary for a problem to have a polynomial-time algorithm. It turns out that in many
cases the ideas behind a good characterization for a problem play an important role for
designing polynomial-time algorithms. We will see some examples below.

There are different beliefs about whether P = NP ∩ coNP (researchers working in
cryptography and complexity tend to believe P , NP∩coNP whereas researchers working
in algorithms and combinatorial optimization tend to believe P = NP ∩ coNP).

Question. P = NP ∩ coNP?

The following lemma shows that problems with good characterizations are unlikely to
be NP-complete.

2

Lemma. If NP , coNP, then no problem in NP ∩ coNP is NP-complete.

1.6 Conjectured landscape of NP vs coNP

The following sections give examples of problems with good characterizations. Some
of these problems are also known to be in P (using more involved algorithms). Other
problems, for instance FACTORING, are not known to be in P (and conjectured to be
intractable by some researchers).

1.7 Example: Systems of linear equations

LINEQ. Given a system of linear equations, decide if the system is satisfiable. (More
formally, we are given a matrix A ∈ Qm×n and a vector b ∈ Qm —with all numbers in
binary representation— and the goal is to decide if there exists a vector x ∈ Qn such
that Ax = b.)

We can solve this problem in polynomial-time by Gaussian elimination. It turns out
that analyzing the running time of Gaussian elimination is quite subtle when taking into
account bit complexity for arithmetic operations. 1

We discuss how to show that LINEQ has a good characterization.

3

Theorem. LINEQ ∈ NP ∩ coNP.

First, we show that the problem is in NP.

Lemma. LINEQ ∈ NP.

Proof sketch. Given A, b, and x, checking Ax = b takes time polynomial in the bit
complexity of A, b, and x. (The fact that integer multiplication and addition take
polynomial-time also implies that matrix-vector multiplication takes polynomial-time.) It
remains to show that every satisfiable system of linear equations {Ax = b} has a solution x
with bit complexity polynomial in the bit complexity of A and b. This fact can be shown
by bounds on determinants. See homework 5, question 3 for more detailed hints.

In order to show that LINEQ ∈ coNP, we will use the following linear algebra fact.

Linear algebra fact. For every system of linear equations {Ax = b} with A ∈ Qm×n and
b ∈ Qm, either there exists x ∈ Qn with Ax = b or there exists y ∈ Qm such that y>A = 0
and y>b = 1.

Note that y>A = 0 and y>b = 1 implies that the system {Ax = b} is not satisfiable, because
every x satisfies y>(Ax − b) = (y>A)x − y>b = 1, which means that Ax − b , 0. We give a
geometric proof for this fact at the end of this section.

The above linear algebra fact implies the following reduction between LINEQ and its
complement.

Lemma. LINEQ ≤p LINEQ.

Proof. Let A ∈ Qm×n and b ∈ Qm. By the above linear algebra fact, the linear system
{Ax = b} is not satisfiable if and only if the linear system {y>A = 0, y>b = 1} is satisfiable.
In matrix form, the latter system is {By = c}, where

B =

(
A>

b>

)
and c =

(
0n

1

)
. (6)

It follows that the function mapping (A, x) to (B, c) as above is a polynomial-time Karp
reduction from LINEQ to LINEQ

Proof of theorem. The previous lemmas—LINEQ ∈ NP and LINEQ ≤p LINEQ—together
imply LINEQ ∈ NP (recall homework 3 question 2), which means that LINEQ ∈ NP ∩
coNP.

Proof of linear algebra fact. Let A ∈ Qm×n and b ∈ Qm. We are to show that the system
{Ax = b} has a solution if and only if the system {y>A = 0, y>b = 1} does not have a solution.
Let U = {Ax | x ∈ Rn

} be the linear subspace of Rm spanned by the columns of A. We
decompose b as the sum b = c + y such that c ∈ U and y is orthogonal to U. (Geometrically
c is the point in U closest to b in Euclidean distance.) Since y is orthogonal to U, it
satisfies y>A = 0 (which means geometrically that y is orthogonal to the columns of A).

4

http://toc15.dsteurer.org/homework/#homework-5-released-friday-925
http://toc15.dsteurer.org/homework/#homework-3-released-thursday-910

By the construction of y, the system {Ax = b} is satisfiable if and only if y = 0. Since
b = y + c, the vector y satisfies

‖y‖22 = y>y = y>(b − c) = y>b. (7)

It follows that y , 0 if and only if y>b , 0. Therefore, by scaling y appropriately, we obtain
a solution for {y>A = 0, y>b = 1} if and only if {Ax = b} is not satisfiable.

1.8 Example: Maximum flow and minimum cut

In the following, a flow network is a directed graph with dedicated source and sink, and
nonnegative integer capacities assigned to edges.

MAXFLOW. Given a flow network G and a number v ∈ N, decide if there exists a
flow of value larger than v in G.

The following problem turns out to be closely related (by the max-flow min-cut theorem
below).

MINCUT. Given a flow network G and a number v ∈ N, decide if there exists a
source-sink cut of capacity at most v in G.

Both MAXFLOW and MINCUT are problems in P (using fairly sophisticated combina-
torial algorithms). Below we will discuss how to show that these problems have good
characterizations.

Theorem. MAXFLOW,MINCUT ∈ NP ∩ coNP.

Recall that the Ford–Fulkerson algorithm shows the following interesting-trivial fact.

Fact. Every flow network (with integer capacities) has a flow of maximum value that
the flow values along all edges are integers.

5

This fact allows us to conclude that MAXFLOW ∈ NP: Given a network G, a number v,
and a potential flow f , we can verify in polynomial time if f is a valid flow in G of value
larger than v. Furthermore, if there exists a flow of value larger than v, then there is also
one with bit complexity bounded by the bit complexity of G. (Here, we use the fact above.)
It is also straightforward to show that MINCUT is in NP.

Lemma. Both MAXFLOW and MINCUT are decision problems in NP.

Also recall that the analysis of the Ford–Fulkerson algorithm showed the following
connection between MAXFLOW and MINCUT.

Maximum-flow minimum-cut theorem. For every flow network, the maximum value
of a flow is equal to the minimum capacity of a source-sink cut.

Together with the previus lemma, the max-flow min-cut theorem allows us to show that
MAXFLOW and MINCUT are also in coNP.

Lemma. MAXFLOW ≤p MINCUT and MINCUT ≤p MINCUT.

Proof. In the problem MAXFLOW, we are given a network G and a number v and we are
to decide if the maximum flow in G is at most v. By the max-flow min-cut theorem, this
question is equivalent to the question whether G has a source-sink cut of capacity at most
v. It follows that MAXFLOW ≤p MINCUT. The argument for MINCUT ≤p MINCUT
is similar. (Note that we actually showed that MAXFLOW and MINCUT are the same
problem in the sense MAXFLOW = MINCUT.)

1.9 Example: Primality

Recall that a number is prime if it is greater than 1 and has no positive divisors other than
1 and itself. Here we consider the problem of testing if a given number is prime.

PRIMES. Given a number p ∈N encoded in binary, decide if p is prime.

For this problem a good characterization has been known since 1976 (Pratt).

Theorem. PRIMES ∈ P ∩ coNP.

Also polynomial-time randomized algorithms—by Miller–Rabin and Solovay–Strassen—
have been known for this problem since around the same time. It has been an open
problem to remove the use of randomness in these tests of primality. In 2002, Agrawal,
Kayal, and Saxena showed that this problem indeed has a deterministic polynomial-time
algorithm.

6

Theorem. PRIMES ∈ P

1.10 Example: Integer factoring

The following problem plays a central role in cryptography (especially public-key encryp-
tion). An efficient algorithm for this problem could be used to break many cryptographic
protocols used today, in particular RSA.

FACTORING. Given numbers x, a, b ∈ N encoded in binary, decide if there exists a
prime factor p in the interval [a, b] such that p divides x.

In order to give evidence for the security of current cryptographic protocols, it would
be great to be able show that FACTORING is NP-complete. (Such a proof would not
imply that the protocols are actually secure but it would still boost our confidence in their
security.) However, it turns out that FACTORING has a good characterization, which
means that it is not NP-complete unless NP is equal to coNP.

Theorem. FACTORING ∈ NP ∩ coNP.

Proof. The problem is in NP because the prime factor p is a polynomial-length certificate
for YES instances: Using the polynomial-time algorithm for PRIMES, we can verify in
polynomial-time that p is a prime. We can also verify p ∈ [a, b] and that p divides x.

The problem is also in coNP because a prime factorization of x is a polynomial-length
certificate for NO instances: Given numbers p1, . . . , pk, we can check that p1, . . . , pk is a
prime factorization of x (again using the polynomial-time algorithm for PRIMES) and that
none of the primes p1, . . . , pk are in the interval [a, b]. Here, we also use the fact that the
prime factorization of a number is unique.

Footnotes

1. It is straightforward to show that the number of arithmetic operations performed by the algorithm is
polynomial. What’s more difficult to show is that these operations are only applied to numbers with
polynomial bit complexity.

7

https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29

	coNP and good characterizations
	coNP
	Polynomial-time refuters
	Short proofs and refutations
	NP vs coNP
	Efficient algorithms vs good characterizations
	Conjectured landscape of NP vs coNP
	Example: Systems of linear equations
	Example: Maximum flow and minimum cut
	Example: Primality
	Example: Integer factoring

