
CS4740/CS5740/LING4474/COGST4740
Fall ’22 midterm solutions

Edits made after the initial release of these solutions are in orange.
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1. [14 points] N-gram modeling

Here is a small, 3-sentence training corpus. Assume that the vocabulary only consists
of words occurring in it.

mares eat oats and goats eat oats and little lambs eat ivy .
a kid will bleat and eat ivy too .
piglets sleep and eat .

No unknown word handling is required in this question. Assume no preprocessing what-
soever: word tokens are simply separated by a space or a newline.

Note: For all the sub-questions within this question (and elsewhere, wherever applicable),
indicate the final answer as a product of fractions that make up the computation, and not
just the final value. As an example, consider count(language) = 10 and count(natural) =
20; a properly-formatted (but, irrelevant) answer might be count(language)

count(natural) (this would be
10
20

but just giving the count fraction is fine).

(a) [6 points] Using the maximum likelihood estimation and unigram modeling, show
the computation for P (eat oats and eat ivy).

P (eat oats and eat ivy) =

= P (eat)× P (oats)× P (and)× P (eat)× P (ivy)

=
count(eat)∑|V |
i=1 count(wi)

× count(oats)∑|V |
i=1 count(wi)

× count(and)∑|V |
i=1 count(wi)

× count(eat)∑|V |
i=1 count(wi)

× count(ivy)∑|V |
i=1 count(wi)

Students did not need to provide the numerical computations, but, for those curious:

The vocabulary V = {., a, and, bleat, eat, goats, ivy, kid, lambs, little, mares,

oats, piglets, sleep, too, will} (|V | = 16) and
∑|V |

i=1 count(wi) = 27; so the numerical
fractions are: 5

27
× 2

27
× 4

27
× 5

27
× 2

27
.

(b) [6 points] Using the maximum likelihood estimation and bigram modeling, show
the computation for P (eat oats and eat ivy). When computing the sentence-initial
bigram, use the unigram probability.
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Read “wi → wj” as “wi immediately precedes wj”:

P (eat oats and eat ivy) =

= P (eat)× P (oats|eat)× P (and|oats)× P (eat|and)× P (ivy|eat)

=
count(eat)∑|V |
i=1 count(wi)

× count(eat→ oats)∑|V |
i=1 count(eat→ wi)

× count(oats→ and)∑|V |
i=1 count(oats→ wi)

× count(and→ eat)∑|V |
i=1 count(and→ wi)

× count(eat→ ivy)∑|V |
i=1 count(eat→ wi)

Students did not need to fill in the numbers, but they are: 5
27
× 2

5
× 2

2
× 2

4
× 2

5
.

(c) [2 points] Now using add-k smoothing with k = 1 and bigram modeling, show the
computation of P (oats | eat).
Read “wi → wj” as “wi immediately precedes wj”:

P (oats | eat) = k + count(eat→ oats)∑|V |
i=1(k + count(eat→ wi))

=
1 + count(eat→ oats)

|V |+
∑|V |

i=1 count(eat→ wi)

Students did not need to fill in the numbers, but they are (noting that we said to
do no unknown word handling, so |V | stays at 16, rather than expanding to 17 due
to the addition of an unknown word): = 1+2

16+5
= 3

21
.
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2. [21 points] Markov models

(a) [4 points] The Viterbi algorithm requires two sets of parameters, (1) lexical gen-
eration probabilities (i.e., observation likelihoods) and (2) transition probabilities.
Assume the task of named-entity recognition (NER) tagging and that an appro-
priately annotated corpus is provided. Under the assumption of add-k smoothing,
how would you mathematically compute the following probabilities (no unseen word
handling) in a system of m tags and n tokens:

i. [2 points] The probability of obtaining tag tj at time T , if you obtained tag ti
at time T − 1.
With m distinct tokens (read “ti → tj” as: ti at time T − 1 transitions to tj at
time T ):

P (tj | ti) = P (ti → tj) =
k + count(ti → tj)∑m

x=1(k + count(ti → tx))

ii. [2 points] The probability of tag ti emitting a token wj at time T − 1.
With n distinct tokens (read “ti → wj” as: ti emits wj at time T − 1):

P (wj | ti) = P (ti → wj) =
k + count(ti → wj)∑n

x=1(k + count(ti → wx))

(b) [3 points] Consider the task of NER tagging, with tags (ti; i ∈ {1, 2, . . . ,m}; tstart is
a special tag associated with the start of the sequence) and tokens (wj). Consider
the following pseudocode implementation to tag an input sequence of n tokens,
{w1, w2, . . . , wn}, using a hidden Markov model (HMM):

function tag-sequence({w1, w2, . . . , wn}, tstart):
tags: T ← [ ]
tprev ← tstart
for j = 1 to n:

scores: S ← [ ]
for i = 1 to m:

S[i]← P (ti|tprev)× P (wj|ti)
tprev ← argmaxS

ti

; T [j]← argmaxS
ti

output T

Under the assumption that all necessary probability values are precomputed, justify
if the above implementation is better than the brute-force search, and if not, then
propose and justify an alternate approach.

Hint: The search space for the HMM model includes approximately mn total paths.

The pseudocode implementation is a greedy search strategy that searches exactly
m×n total paths (which is significantly better than searchingmn paths in the brute-
force approach). However, the greedy algorithm provides a sub-optimal solution.
Hence, the above implementation is worse than the brute-force approach.
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Although the “true” answer is that the above implementation is worse than brute
force due to accuracy concerns, we decided not to deduct points for answers that
only mentioned efficiency.

The Viterbi search algorithm can be used to find a maximization optimization solu-
tion. The algorithm does not assume optimality at each step, and rather postpones
any hard decision making until the last tag. By maintaining a back-pointer, we
can trace the path that lead to the global optimal solution. The Viterbi algorithm
searches m2 × n total paths, which is significantly better than searching mn paths
in the brute-force approach.

(c) [7 points] For the task of NER tagging, consider using a bigram HMM with the
Viterbi algorithm. Let us assume the tag set is as follows:

[org] : organization
[per] : person
[loc] : location
[misc] : miscellaneous
[o] : not a named entity
[s-tag] : special tag for the start of the sentence token ([s-tok])
[e-tag] : special tag for the end of the sentence token ([e-tok])

Further, assume that we train our bigram HMM model on the following 2-sentence
corpus (each token is tagged to its corresponding NER tag below it):

[s-tok] Messi scored four in World Cup . [e-tok]
[s-tag] [per] [o] [o] [o] [misc] [misc] [o] [e-tag]

[s-tok] Hamm scored 100 in NLP . [e-tok]
[s-tag] [per] [o] [o] [o] [misc] [o] [e-tag]

Compute the score [=likelihood, as announced during the exam] assigned by the
bigram HMM model to the following sequence (with the associated NER tags) as
shown below:

[s-tok] Hamm scored four in NLP . [e-tok]
[s-tag] [per] [o] [o] [o] [misc] [o] [e-tag]

Note: Please do not attempt to reduce the obtained solution into a single fraction
or a decimal equivalent. It is expected that you retain the fractions that make up
the computations.
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P ([s-tok] | [s-tag]) ×
P ([per] | [s-tag]) ×P (Hamm | [per]) ×
P ([o] | [per]) ×P (scored | [o]) ×
P ([o] | [o]) ×P (four | [o]) ×
P ([o] | [o]) ×P (in | [o]) ×
P ([misc] | [o]) ×P (NLP | [misc]) ×
P ([o] | [misc]) ×P (. | [o]) ×
P ([e-tag] | [o]) ×P ([e-tok] | [e-tag])

(d) [3 points] String identity can be expensive to use as a feature in MEMMs. Briefly
describe an efficient method of including string-based features in an MEMM classi-
fier.

A simple solution is to use binary string-indicator functions for a small set of rele-
vant terms (e.g., “word is cat”). It was important to specify a reduced set; creating
a binary feature for many or all possible terms is not efficient. Other acceptable
answers include using word shape represented through indicators (binary or nu-
meric values), capitalization features, numeric features capturing some specifics,
and others.

(e) [4 points] Each of the following is a possible MEMM input feature that could be
used for NER tagging. Circle all that are valid to use. If none are valid, write
“None”.

A) Conditional probability of the next token given the current token

B) Conditional probability of the previous token given the current NER tag

C) Conditional probability of the current token given the current POS tag

D) HMM start probability of the current NER tag

Note that the question asks to indicate valid features:

• Valid: A, C, D (although D requires building an HMM). Answers that listed
at least one of A, C, or D received the (single) point allocated for indicating
correct valid answers.

• Invalid: B (attempt to condition on Y when computing P (Y |X) without an
explicit Bayes flip)
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3. [13 points] Word embeddings

(a) [4 points] What is the purpose of using negative samples when training word em-
beddings?

To provide an comparison class to define a partition against. To put it another way,
if you only have positive samples in your training data, you could learn a classifer
that always says “everything has the positive label”.

Advanced: Sampling (as opposed to using all possible negative examples) makes
the class sizes more balanced and makes training faster than evaluating the cross-
product of all lexical pairs.

(b) [4 points] Explain the distributional hypothesis that is foundational to word em-
beddings.

Similar words occur in similar contexts. References to Zipf’s law were not correct
responses to this question.

(c) [2 points] Distributed word representations (like skipgram) do not explicitly handle
unknown tokens. What can you do to get an embedding for an unknown token that
was not seen during training?

Several answers are possible:

• replace the word with an [unk] token for which you do have embeddings, or

• use the hidden layer from when you first encounter that word as its embedding,
if the hidden-layer dimension is the same as the embedding dimension, or

• average the context word embeddings to represent the unseen word

(d) [3 points] Using precomputed word vectors (such those learned by Word2Vec) is
common in language modeling. But we can also learn word embeddings on the fly
when training a feed-forward neural network for specific tasks. Why would you
train word embeddings instead of using precomputed Word2Vec embeddings?

Because the trained word embeddings will be tuned to your particular task (as long
as you have the time and computing power to do your own training).
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4. [11 points] Neural networks and backpropagation

Each of the following questions presents a pseudocode implementation of (a part of) a
neural network. Looking at the pseudocode, please note if there is anything missing
and/or incorrect in the given implementation, if yes, then indicate and correct it, and if
not, then just record your answer as nothing being wrong. (Explicitly state and justify
any and all assumptions made.)

Notation: x(i) ∈ Rn denotes the i-th training sample (of total m samples), y(i) ∈ R
denotes the prediction for that i-th training sample, and θjs are the parameters (weights)
of the algorithm.

Bonus: For all of the following pseudocode implementations, there is the added error

that θ is 0⃗ (since θ gets reset to 0⃗, not updated, at every forward pass, effectively
nullifying any gradient ascent/descent updates). So, any answers that read “need to be
assigned randomly” are wrong—the parameter initialization needs to moved out of the
forwardnn(x).

However, given that the hint for at least one of these tells people to look at the activation
functions, people need to have identified the issues with the activation functions to get
full credit on these problems.

Note: Technically speaking, the given activation must be defined and differentiable every-
where (or at least the sub-gradients must be explicitly defined since this is a pseudocode
implementation (e.g., for ReLU at θTx(i) = 0)). But given the lack of a calculus prereq-
uisite in the course, we are only requiring students to propose solutions that address the
input domain issue, and not requiring solutions involving differentiability.

(a) [4 points] The pseudocode is as follows:

function f(x ∈ R):
z ← exp(x+ 1)
z ← log(z)
output z

function forwardnn(x ∈ Rm×n):
θ ∈ Rn ← 0⃗
y ∈ Rm

for i = 1 to m:
hout ← θTx(i)

y(i) ← f(hout)
output y

The activation function is linear, log(exp(θTx(i)+1)) = θTx(i)+1, which is incorrect;
instead, use a nonlinear activation (e.g., log(exp(θTx(i)) + 1), sigmoid, etc.).

(b) [4 points] The pseudocode is as follows:

function f(x ∈ R):
z ← 2 + exp(−x)
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z ← 2/z
output z

function forwardnn(x ∈ Rm×n):
θ ∈ Rn ← 0⃗
y ∈ Rm

for i = 1 to m:
hout ← θTx(i)

y(i) ← f(hout)
output y

The activation function is nonlinear (a modified version of the standard sigmoid).
Following the recommendations in (a), we can indicate that there is no error in the
implementation.

(c) [3 points] The pseudocode is as follows:

function f(x ∈ R):
z ←

√
x

output z

function forwardnn(x ∈ Rm×n):
θ ∈ Rn ← 0⃗
y ∈ Rm

for i = 1 to m:
hout ← θTx(i)

y(i) ← f(hout)
output y

Hint: Visualize the network activation.

Using optimization methods such as gradient descent requires the gradient to be
computed. Hence, an ideal activation function is both differentiable and nonlinear.
Observe that

√
θTx(i) is not defined for θTx(i) < 0 and its derivative 1

2
√
θT x(i)

is not

defined for θTx(i) ≤ 0.

A simple fix is to use the absolute value in the activation function, such as like this
(for some constant γ):

f(θTx(i)) =

{
γ, θTx(i) = 0√
|θTx(i)|, otherwise

Note that the above activation is differentiable and nonlinear. Any other nonlinear
and differentiable activations are acceptable as corrections.

9



5. [14 points] Recurrent neural network theory

Consider the task of using a simple recurrent neural network (RNN) (shown above) for
the task of language modeling (i.e. to predict the next word in a sequence of words).

(a) [4 points] What do W and U represent? That is, what functions do they perform?

W projects a word embedding to the hidden vector, while U transitions the hidden
vector from one time step to the next (italicized text denotes the key phrases).
Responses needed to at least indicate both the inputs and the outputs to receive
full credit.

(b) [4 points] In some language models X and Y will not have the same dimensionality.
Why not, and in those cases, what is their dimensionality?

This occurs when X is a word embedding while Y represents a one-hot vocabulary
vector—X is of length dim(embedding) and Y is length |V |. Note that the ques-
tion specifies that we are dealing with the language-modeling setting, not arbitrary
classification settings.

(c) [3 points] At test time, which of the objects denoted by variables in the above image
change over time, and which do not? In your answer, account for all of H, U , V ,
W , X, Y .

Change: X (the value of input), Y (the value of the output), H (the value of the
hidden layer)
Unchanging: U , W , V

(d) [3 points] What is the dimensionality/shape of U? You can use the function len(·)
in your answer, which takes a vector as an argument and returns its length.

len(H)× len(H)
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6. [3 points] Recurrent neural network applications

Consider a system with the following characteristics:

• Input: note made by a doctor

• Step 1: run a recurrent neural network language model (RNN-LM) on the input

• Step 2: run a classifier on the final hidden layer activations of the RNN-LM

• Output: “serious” (=patient has a serious medical condition, according to the
doctor), or “not serious”

You notice that that the system mistakenly classifies the note below as “serious”. You
think the problem might involve the last words, “deadly disease”, whose occurrence is
misleading here.

The patient is 24 years old and has not been diagnosed with any chronic
health conditions. All vital signs normal. A smallpox test was negative. I am
so looking forward to the end of that deadly disease!

(a) [3 points] Explain how the architecture of an RNN-LM could be leading to the
classification error.

The words “deadly disease” (which is expected to be a strong indicator of note crit-
icality) could have caused the note to be misclassified, especially because it appears
towards the end of a long sequence—RNN “forgets” stuff near the beginning, as it
all gets mushed up in the hidden state over a long pass over many words.
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