CS474 Natural Language Processing

= Today

— Smoothing
» Add-one
» Good-Turing

— Training issues

— Combining estimators
» Deleted interpolation

Bigram probabilities

= Problem with the maximum likelihood
estimate: sparse data

| want| o eal Chinese | food lunch
l 0023 a2 0 D038 0 0 i}

want 025 0 65 0048 GG | 0049
to 0na2 | oo 03l 26 00092 I 037
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Smoothing Add-one smoothing

= Need better estimators than MLE for rare
events

= Approach

— Somewhat decrease the probability of
previously seen events, so that there is a little
bit of probability mass left over for previously
unseen events

» Smoothing
» Discounting methods

= Add one to all of the counts before normalizing
into probabilities
= Normal unigram probabilities
p(w) = %)
= Smoothed unigram probabilities
() = SO+
N +V
= Adjusted counts
. N
¢, =(c+)——
N +V




Alternate to adjusted/discounted

counts

= Adjusted/discounted counts

Add-one bigram counts
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= Discount d,
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= Add-one smoothin " Adjusted add-
g one I want Lo eat Chinese food lunch
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Too much probability mass is moved

= Estimated bigram frequencies

Methodology

= AP data, 44million words r=fue | fomp fadat
= Church and Gale (1991) 0 0.000027 | 0.000137
= In general, add-one smoothing |1 0.448 0.000274
is a poor method of smoothing 5 2 e
= Much worse than other 25 0.000
methods in predicting the 3 2.24 0.000548
ag:tual probability for unseen 4 3.23 0.000685
bigrams
5 4.21 0.000822
6 5.23 0.000959
7 6.21 0.00109
8 7.21 0.00123
9 8.26 0.00137

= Cardinal sin: test on the training corpus

Cardinal sin: train on the test corpus

Divide data into training set and test set

— Train the statistical parameters on the training set; use them to
compute probabilities on the test set

— Test set: 5-10% of the total data, but large enough for reliable

results

Divide training into training and validation set
» Validation set is ~10% of original training set
» Obtain counts from training set
» Tune smoothing parameters on the validation set

Divide test set into development and final test set

— Do all algorithm development by testing on the dev set

— Save the final test set for the very end...use for reported results

Good-Turing discounting

» Re-estimates the amount of probability mass to
assign to N-grams with zero or low counts by
looking at the number of N-grams with higher
counts.

= Let N, be the number of N-grams that occur c
times.

— For bigrams, N, is the number of bigrams of count O,
N, is the number of bigrams with count 1, etc.

= Revised counts: N
¢ =(c+1) —’\Tl

c

Good-Turing discounting results

Works very well in
practice

Usually, the GT
discounted estimate
c* is used only for
unreliable counts
(e.g.<b)

As with other
discounting
methods, it is the
norm to treat N-
grams with low
counts (e.g. counts
of 1) as if the count
was 0

r=fue | femp fada1 for

0 0.000027 | 0.000137 |0.000027
1 0.448 0.000274 0.446
2 1.25 0.000411 1.26
3 2.24 0.000548 |2.24
4 3.23 0.000685 3.24
5 4.21 0.000822 4.22
6 5.23 0.000959 |5.19
7 6.21 0.00109 6.21
8 7.21 0.00123 7.24
9 8.26 0.00137 8.25
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= Next

— Combining estimators
» Deleted interpolation
» Backoff (won'’t really cover this...)

Combining estimators

= Smoothing methods
— Provide the same estimate for all unseen (or rare) n-grams
— Make use only of the raw frequency of an n-gram

= But there is an additional source of knowledge we can
draw on --- the n-gram “hierarchy”

— If there are no examples of a particular trigram,w, _,w,_,w,, to
compute P(w,|w,,W,_,), we can estimate its probability by using
the bigram probability P(w,|w,_, ).

— If there are no examples of the bigram to compute P(w,|w,,), we
can use the unigram probability P(w,).

= For n-gram models, suitably combining various models of
different orders is the secret to success.

Simple linear interpolation

= Construct a linear combination of the multiple
probability estimates.

— Weight each contribution so that the result is another
probability function.

P(Wn | Wn—l’ Wn—2) = %P(Wn | Wn—lwn—z) + AZP(Wn | Wn—l) + ﬂlp(wn)

— Lambda’s sum to 1.
= Also known as (finite) mixture models

Backoff (Katz 1987)

= Non-linear method

= The estimate for an n-gram is allowed to back off through
progressively shorter histories.

= The most detailed model that can provide sufficiently
reliable information about the current context is used.

= Trigram version (first try):
s

P(w, [w;_,w,_,), if C(w,_,w,_w)>0
a, P(w; [w_y), 1if C(w,_,w,_w)=0

IS(Wi |Wi—2Wi—1) =
) and C(w,_,w,)>0

o, P(w;), otherwise.
\




Final words...

= When discounting, we usually ignore counts of 1

= Problems with backoff?

— Probability estimates can change suddenly on adding
more data when the back-off algorithms selects a
different order of n-gram model on which to base the
estimate.

= Works well in practice.
= Good option: simple linear interpolation with MLE

n-gram estimates plus some allowance for
unseen words (e.g. Good-Turing discounting)




