
CS474 Natural Language Processing

Today 
– Smoothing

» Add-one
» Good-Turing

– Training issues
– Combining estimators

» Deleted interpolation
» Backoff

Bigram probabilities

Problem with the maximum likelihood 
estimate: sparse data

Smoothing

Need better estimators than MLE for rare 
events
Approach
– Somewhat decrease the probability of 

previously seen events, so that there is a little 
bit of probability mass left over for previously 
unseen events

» Smoothing
» Discounting methods

Add-one smoothing
Add one to all of the counts before normalizing 
into probabilities
Normal unigram probabilities

Smoothed unigram probabilities

Adjusted counts
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Alternate to adjusted/discounted 
counts

Adjusted/discounted counts
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Add-one bigram counts

Original 
counts

New counts

Add-one smoothed bigram probabilites

Original

Add-one smoothing

Adjusted bigram counts

Original

Adjusted add-
one
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Too much probability mass is moved

Estimated bigram frequencies
AP data, 44million words
Church and Gale (1991)
In general, add-one smoothing 
is a poor method of smoothing
Much worse than other 
methods in predicting the 
actual probability for unseen 
bigrams
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Methodology
Cardinal sin: test on the training corpus
Cardinal sin: train on the test corpus
Divide data into training set and test set
– Train the statistical parameters on the training set; use them to 

compute probabilities on the test set
– Test set: 5-10% of the total data, but large enough for reliable 

results
Divide training into training and validation set

» Validation set is ~10% of original training set
» Obtain counts from training set
» Tune smoothing parameters on the validation set

Divide test set into development and final test set
– Do all algorithm development by testing on the dev set
– Save the final test set for the very end…use for reported results

Good-Turing discounting

Re-estimates the amount of probability mass to 
assign to N-grams with zero or low counts by 
looking at the number of N-grams with higher 
counts.
Let Nc be the number of N-grams that occur c
times.
– For bigrams, N0 is the number of bigrams of count 0, 

N1 is the number of bigrams with count 1, etc.
Revised counts:
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Good-Turing discounting results
Works very well in 
practice
Usually, the GT 
discounted estimate 
c* is used only for 
unreliable counts 
(e.g. < 5)
As with other 
discounting 
methods, it is the 
norm to treat N-
grams with low 
counts (e.g. counts 
of 1) as if the count 
was 0
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Next 
– Combining estimators

» Deleted interpolation
» Backoff (won’t really cover this…)

Combining estimators
Smoothing methods
– Provide the same estimate for all unseen (or rare) n-grams
– Make use only of the raw frequency of an n-gram

But there is an additional source of knowledge we can 
draw on --- the n-gram “hierarchy”
– If there are no examples of a particular trigram,wn-2wn-1wn, to 

compute P(wn|wn-2wn-1), we can estimate its probability by using 
the bigram probability P(wn|wn-1 ).

– If there are no examples of the bigram to compute P(wn|wn-1), we 
can use the unigram probability P(wn).

For n-gram models, suitably combining various models of 
different orders is the secret to success.

Simple linear interpolation
Construct a linear combination of the multiple 
probability estimates.
– Weight each contribution so that the result is another 

probability function.

– Lambda’s sum to 1.
Also known as (finite) mixture models
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Backoff (Katz 1987)

Non-linear method
The estimate for an n-gram is allowed to back off through 
progressively shorter histories.
The most detailed model that can provide sufficiently 
reliable information about the current context is used.
Trigram version (first try):
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Final words…
When discounting, we usually ignore counts of 1 
Problems with backoff?
– Probability estimates can change suddenly on adding 

more data when the back-off algorithms selects a 
different order of n-gram model on which to base the 
estimate.

Works well in practice.
Good option: simple linear interpolation with MLE 
n-gram estimates plus some allowance for 
unseen words (e.g. Good-Turing discounting)


