
CS474 Natural Language Processing

Today
– Smoothing

» Add-one
» Good-Turing

– Training issues
– Combining estimators

» Deleted interpolation
» Backoff

Bigram probabilities

Problem with the maximum likelihood
estimate: sparse data

Smoothing

Need better estimators than MLE for rare
events
Approach
– Somewhat decrease the probability of

previously seen events, so that there is a little
bit of probability mass left over for previously
unseen events

» Smoothing
» Discounting methods

Add-one smoothing
Add one to all of the counts before normalizing
into probabilities
Normal unigram probabilities

Smoothed unigram probabilities

Adjusted counts

N
wCwP x

x
)()(=

VN
Ncc ii +

+=)1(*

VN
wCwP x

x +
+

=
1)()(

Alternate to adjusted/discounted
counts

Adjusted/discounted counts

Discount dc

c
cdc

*

=

VN
Ncc ii +

+=)1(*

Add-one bigram counts

Original
counts

New counts

Add-one smoothed bigram probabilites

Original

Add-one smoothing

Adjusted bigram counts

Original

Adjusted add-
one
(#’s are
off…)

Too much probability mass is moved

Estimated bigram frequencies
AP data, 44million words
Church and Gale (1991)
In general, add-one smoothing
is a poor method of smoothing
Much worse than other
methods in predicting the
actual probability for unseen
bigrams

0.001378.269

0.001237.218

0.001096.217

0.0009595.236

0.0008224.215

0.0006853.234

0.0005482.243

0.0004111.252

0.0002740.4481

0.0001370.0000270

fadd-1fempr = fMLE

Methodology
Cardinal sin: test on the training corpus
Cardinal sin: train on the test corpus
Divide data into training set and test set
– Train the statistical parameters on the training set; use them to

compute probabilities on the test set
– Test set: 5-10% of the total data, but large enough for reliable

results
Divide training into training and validation set

» Validation set is ~10% of original training set
» Obtain counts from training set
» Tune smoothing parameters on the validation set

Divide test set into development and final test set
– Do all algorithm development by testing on the dev set
– Save the final test set for the very end…use for reported results

Good-Turing discounting

Re-estimates the amount of probability mass to
assign to N-grams with zero or low counts by
looking at the number of N-grams with higher
counts.
Let Nc be the number of N-grams that occur c
times.
– For bigrams, N0 is the number of bigrams of count 0,

N1 is the number of bigrams with count 1, etc.
Revised counts:

c

c

N
Ncc 1*)1(++=

Good-Turing discounting results
Works very well in
practice
Usually, the GT
discounted estimate
c* is used only for
unreliable counts
(e.g. < 5)
As with other
discounting
methods, it is the
norm to treat N-
grams with low
counts (e.g. counts
of 1) as if the count
was 0

0.00137

0.00123

0.00109

0.000959

0.000822

0.000685

0.000548

0.000411

0.000274

0.000137

fadd-1

8.258.269

7.247.218

6.216.217

5.195.236

4.224.215

3.243.234

2.242.243

1.261.252

0.4460.4481

0.0000270.0000270

fGTfempr = fMLE

CS474 Natural Language Processing

Next
– Combining estimators

» Deleted interpolation
» Backoff (won’t really cover this…)

Combining estimators
Smoothing methods
– Provide the same estimate for all unseen (or rare) n-grams
– Make use only of the raw frequency of an n-gram

But there is an additional source of knowledge we can
draw on --- the n-gram “hierarchy”
– If there are no examples of a particular trigram,wn-2wn-1wn, to

compute P(wn|wn-2wn-1), we can estimate its probability by using
the bigram probability P(wn|wn-1).

– If there are no examples of the bigram to compute P(wn|wn-1), we
can use the unigram probability P(wn).

For n-gram models, suitably combining various models of
different orders is the secret to success.

Simple linear interpolation
Construct a linear combination of the multiple
probability estimates.
– Weight each contribution so that the result is another

probability function.

– Lambda’s sum to 1.
Also known as (finite) mixture models

)()|()|(),|(11221321 nnnnnnnnn wPwwPwwwPwwwP λλλ ++= −−−−−

Backoff (Katz 1987)

Non-linear method
The estimate for an n-gram is allowed to back off through
progressively shorter histories.
The most detailed model that can provide sufficiently
reliable information about the current context is used.
Trigram version (first try):

=−−)|(ˆ
12 iii wwwP

0)(),|(1212 >−−−− iiiiii wwwCifwwwP

0)(

0)(),|(

1

1211

>

=

−

−−−

ii

iiiii

wwCand
wwwCifwwPα

.),(2 otherwisewP iα

Final words…
When discounting, we usually ignore counts of 1
Problems with backoff?
– Probability estimates can change suddenly on adding

more data when the back-off algorithms selects a
different order of n-gram model on which to base the
estimate.

Works well in practice.
Good option: simple linear interpolation with MLE
n-gram estimates plus some allowance for
unseen words (e.g. Good-Turing discounting)

