CS474 Natural Language Processing

Today

- Smoothing

- » Add-one
- » Good-Turing
- Training issues
- Combining estimators
 - » Deleted interpolation
 - » Backoff

Bigram probabilities

 Problem with the maximum likelihood estimate: sparse data

	Ι	want	to	eat	Chinese	food	lunch
Ι	.0023	.32	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	.0049
to	.00092	0	.0031	.26	.00092	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.56	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

Smoothing

- Need better estimators than MLE for rare events
- Approach
 - Somewhat decrease the probability of previously seen events, so that there is a little bit of probability mass left over for previously unseen events
 - » Smoothing
 - » Discounting methods

Add-one smoothing

- Add one to all of the counts before normalizing into probabilities
- Normal unigram probabilities

$$\mathbf{P}(w_x) = \frac{C(w_x)}{N}$$

Smoothed unigram probabilities

$$P(w_x) = \frac{C(w_x) + 1}{N + V}$$

Adjusted counts

$$c_i^* = (c_i + 1)\frac{N}{N+V}$$

Alternate to adjusted/discounted counts

Adjusted/discounted counts

$$c_i^* = (c_i + 1)\frac{N}{N+V}$$

Discount d_c

$$d_c = \frac{c^*}{c}$$

Add-one bigram counts

 Original counts

	Ι	want	to	eat	Chinese	food	lunch
I	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

New counts

	Ι	want	to	eat	Chinese	food	lunch
Ι	9	1088	1	14	1	1	1
want	4	1	787	1	7	9	7
to	4	1	11	861	4	1	13
eat	1	1	3	1	20	3	53
Chinese	3	1	1	1	1	121	2
food	20	1	18	1	1	1	1
lunch	5	1	1	1	1	2	1

Add-one smoothed bigram probabilites

\sim	•	•	
()	ric	٦ır	nal
\sim	115	j	iui

	I	want	to	eat	Chinese	food	lunch
I	.0023	.32	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	.0049
to	.00092	0	.0031	.26	.00092	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.56	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

Add-one smoothing

	Ι	want	to	eat	Chinese	food	lunch
I	.0018	.22	.00020	.0028	.00020	.00020	.00020
want	.0014	.00035	.28	.00035	.0025	.0032	.0025
to	.00082	.00021	.0023	.18	.00082	.00021	.0027
eat	.00039	.00039	.0012	.00039	.0078	.0012	.021
Chinese	.0016	.00055	.00055	.00055	.00055	.066	.0011
food	.0064	.00032	.0058	.00032	.00032	.00032	.00032
lunch	.0024	.00048	.00048	.00048	.00048	.00096	.00048

Adjusted bigram counts

Original

	Ι	want	to	eat	Chinese	food	lunch
Ι	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

Adjusted add-

one		I	want	to	eat	Chinese	food	lunch
(#'s are	Ι	6	740	.68	10	.68	.68	.68
	want	2	.42	331	.42	3	4	3
off)	to	3	.69	8	594	3	.69	9
,	eat	.37	.37	1	.37	7.4	1	20
	Chinese	.36	.12	.12	.12	.12	15	.24
	food	10	.48	9	.48	.48	.48	.48
	lunch	1.1	.22	.22	.22	.22	.44	.22

Too much probability mass is moved

- Estimated bigram frequencies
- AP data, 44million words
- Church and Gale (1991)
- In general, add-one smoothing is a poor method of smoothing
- Much worse than other methods in predicting the actual probability for unseen bigrams

$r = f_{MLE}$	f _{emp}	f _{add-1}	
0	0.000027	0.000137	
1	0.448	0.000274	
2	1.25	0.000411	
3	2.24	0.000548	
4	3.23	0.000685	
5	4.21	0.000822	
6	5.23	0.000959	
7	6.21	0.00109	
8	7.21	0.00123	
9	8.26	0.00137	

Methodology

- Cardinal sin: test on the training corpus
- Cardinal sin: train on the test corpus
- Divide data into training set and test set
 - Train the statistical parameters on the training set; use them to compute probabilities on the test set
 - Test set: 5-10% of the total data, but large enough for reliable results
- Divide training into training and validation set
 - » Validation set is ~10% of original training set
 - » Obtain counts from training set
 - » Tune smoothing parameters on the validation set
- Divide test set into development and final test set
 - Do all algorithm development by testing on the dev set
 - Save the final test set for the very end...use for reported results

Good-Turing discounting

- Re-estimates the amount of probability mass to assign to N-grams with zero or low counts by looking at the number of N-grams with higher counts.
- Let N_c be the number of N-grams that occur c times.
 - For bigrams, N_0 is the number of bigrams of count 0, N_1 is the number of bigrams with count 1, etc.
- Revised counts:

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

Good-Turing discounting results

- Works very well in practice
- Usually, the GT discounted estimate c* is used only for unreliable counts (e.g. < 5)
- As with other discounting methods, it is the norm to treat Ngrams with low counts (e.g. counts of 1) as if the count was 0

$r = f_{MLE}$	f _{emp}	f _{add-1}	f _{GT}
0	0.000027	0.000137	0.000027
1	0.448	0.000274	0.446
2	1.25	0.000411	1.26
3	2.24	0.000548	2.24
4	3.23	0.000685	3.24
5	4.21	0.000822	4.22
6	5.23	0.000959	5.19
7	6.21	0.00109	6.21
8	7.21	0.00123	7.24
9	8.26	0.00137	8.25

CS474 Natural Language Processing

Next

- Combining estimators
 - » Deleted interpolation
 - » Backoff (won't really cover this...)

Combining estimators

- Smoothing methods
 - Provide the same estimate for all unseen (or rare) n-grams
 Make use only of the raw frequency of an n-gram
- But there is an additional source of knowledge we can draw on --- the n-gram "hierarchy"
 - If there are no examples of a particular trigram, $w_{n-2}w_{n-1}w_n$, to compute $P(w_n|w_{n-2}w_{n-1})$, we can estimate its probability by using the bigram probability $P(w_n|w_{n-1})$.
 - If there are no examples of the bigram to compute $P(w_n|w_{n-1})$, we can use the unigram probability $P(w_n)$.
- For n-gram models, suitably combining various models of different orders is the secret to success.

Simple linear interpolation

- Construct a linear combination of the multiple probability estimates.
 - Weight each contribution so that the result is another probability function.

 $P(w_n \mid w_{n-1}, w_{n-2}) = \lambda_3 P(w_n \mid w_{n-1}w_{n-2}) + \lambda_2 P(w_n \mid w_{n-1}) + \lambda_1 P(w_n)$

- Lambda's sum to 1.
- Also known as (finite) mixture models

Backoff (Katz 1987)

- Non-linear method
- The estimate for an n-gram is allowed to back off through progressively shorter histories.
- The most detailed model that can provide sufficiently reliable information about the current context is used.
- Trigram version (first try):

$$\hat{P}(w_{i} | w_{i-2}w_{i-1}) = \begin{cases} P(w_{i} | w_{i-2}w_{i-1}), & \text{if } C(w_{i-2}w_{i-1}w_{i}) > 0\\ \alpha_{1} P(w_{i} | w_{i-1}), & \text{if } C(w_{i-2}w_{i-1}w_{i}) = 0\\ & \text{and } C(w_{i-1}w_{i}) > 0\\ \alpha_{2} P(w_{i}), & \text{otherwise.} \end{cases}$$

Final words...

- When discounting, we usually ignore counts of 1
- Problems with backoff?
 - Probability estimates can change suddenly on adding more data when the back-off algorithms selects a different order of n-gram model on which to base the estimate.
- Works well in practice.
- Good option: simple linear interpolation with MLE n-gram estimates plus some allowance for unseen words (e.g. Good-Turing discounting)