Topics for Today

- Pragmatics of discourse context
 - reference resolution
 - noun phrase coreference resolution
 - machine learning approach to NP coreference resolution

The problem of reference resolution

Gracie: Oh yeah...and then Mr. And Mrs. Jones were having matrimonial trouble, and my brother was hired to watch Mrs. Jones.

George: Well, I imagine she was a very attractive woman.

Gracie: She was, and my brother watched her day and night for six months.

George: Well, what happened?

Gracie: She finally got a divorce.

George: Mrs. Jones?

Gracie: No, my brother's wife.

George Burns and Gracie Allen in The Salesgirl

Reference resolution

- Reference: the process by which speakers use expressions like "John Simon" and "his" to denote a real-world entity
 - Referring expressions: NL expression used to perform reference
 - Referent: the entity that is referred to
 - Shorthand form: his refers to John Simon

John Simon, Chief Financial Officer of Prime Corp.

since 1986, saw his pay jump 20%, to \$1.3 million,

-as the 37-year-old also became the financial-

<u>services company's president...</u>

Coreference

- **Coreference:** two referring expressions that are used to refer to the same entity are said to corefer
- John Simon is the antecedent of his.
- Reference to an entity that has been previously introduced into the discourse is called **anaphora**; and the referring expression used is said to be **anaphoric**.

John Simon, Chief Financial Officer of Prime Corp. since <u>1986</u>, saw his <u>pay</u> jump <u>20%</u>, to <u>\$1.3 million</u>, as the 37-year-old also became the financialservices company's president...

Types of referring expressions

- Indefinite noun phrases
 - Introduce entities that are new to the hearer into the discourse context
 - » I saw *a Subaru WRX* today.
 - » I saw this awesome Subaru WRX today.

Definite noun phrases

- Refer to an entity that is identifiable to the hearer
 - » It has already been mentioned in the discourse
 - » It is contained in the hearer's set of beliefs about the world
 - » The uniqueness of the object is implied by the description itself
 - I saw a Subaru WRX today. The WRX was blue and needed a wash.
 - ◆ The Indy 500 is the most popular car race in the US.
 - ♦ The fastest car in the Indy 500 was a Subaru WRX.

Types of referring expressions

- Pronouns
 - Another form of definite reference
 - Referent must have a high degree of activation or salience in the discourse model
 - » John went to Bob's party, and parked next to a beautiful Subaru WRX. He went inside and talked to Bob for more than an hour. Bob told him that he recently got engaged.
 - (a)?? He also said that he bought *it* yesterday.
 - (a') He also said that he bought *the WRX* yesterday.
 - Cataphora: referring expression is mentioned before its referent
 - » Before *he* bought *it*, John checked over the WRX carefully.

Types of referring expressions

- Demonstrative pronouns
 - Behave somewhat differently from simple definite pronouns
 - » Can appear alone or as determiners
 - » Choice of this or that depends on some notion of spatial or temporal proximity
 - I bought a WRX yesterday. It's similar to the one I bought a year ago. That one was really nice, but I like this one even better.
- One-anaphora
 - Blends properties of definite and indefinite reference
 - » I saw no fewer than 6 Subaru WRX's today. Now I want one.
 - May introduce a new entity into the discourse, but it is dependent on an existing referent for the description of this new entity.

Noun Phrase Coreference Resolution

 Identify all phrases that refer to each realworld entity mentioned in the text

John Simon, Chief Financial Officer of Prime Corp. since <u>1986</u>, saw his <u>pay</u> jump <u>20%</u>, to <u>\$1.3 million</u>, as the 37-year-old also became the financialservices company's president...

Why It's Hard

Many sources of information play a role

head noun matches

- » IBM executives = the executives
- » Microsoft executives
- syntactic constraints
 - » John helped himself to ...
 - » John helped him to...
- discourse focus, recency, syntactic parallelism, semantic class, agreement, world knowledge, ...

Why It's Hard

No single source is a completely reliable indicator

- semantic preferences

» Mr. Callahan = president =? the carrier

- number and gender

- » assassination (of Jesuit priests) = these murders
- » the woman = she = Mary =? the chairman

Why It's Hard

Coreference strategies differ depending on the type of referring NP

- definiteness of NPs

- » ... Then Mark saw the man walking down the street.
- » ... Then Mark saw a man walking down the street.

- pronoun resolution alone is notoriously difficult

- » resolution strategies differ for each type of pronoun
- » some pronouns refer to nothing in the text

I went outside and it was snowing.

Types of referents: complications

Inferrables

- A referring expression does not refer to an entity in the text, but to one that is inferentially related to it.
 - I almost bought a WRX today, but a door had a dent and the engine seemed noisy.
 - » Mix the flour, butter, and water. Stir *the batter* until all lumps are gone.
- Discontinous sets
 - Referents may have been evoked in discontinous phrases
 - » John has a Volvo, and Mary has a Mazda. *They* drive *them* all the time.
- Generics refer to a class of entities
 - I saw no fewer than 6 WRX's today. They are the coolest cars.

Topics for today

 Pragmatics of discourse Lappin and Leass [1994] reference resolution hand-crafted heuristics and filters noun phrase coreference resolution - syntactic filters [Lappin and McCord 1990a] - morphological filter machine learning approach to NP coreference - pleonastic pronoun filter ("It was raining.") resolution - procedure for identifying possible antecedents just the basics [Lappin and McCord 1990b] - salience assignment w.r.t. grammatical role, proximity, parallelism.etc. decision procedure **Problems** A Machine Learning Approach Portability Classification Robustness - given a description of two noun phrases, NP_i and NP_i , Few large-scale evaluations classify the pair as coreferent or not coreferent Evaluations make a number of simplifying assumptions [John Simon], [Chief Financial Officer] of [Prime Corp.] - perfect parse ? - omit many difficult cases, e.g. pleonastic pronouns Impose coreference resolution strategies since 1986, saw his pay jump 20%, to \$1.3 million, rather than learn them empirically as the 37-year-old also became the Aone & Bennett [1995]; Connolly et al. [1995]; McCarthy & Lehnert [1995]; Soon, Ng & Lim [2001]; Ng & Cardie [2002]

Traditional Knowledge-Based

Approaches

A Machine Learning Approach

Clustering

- coordinates pairwise coreference decisions

Issues

- Training data
- Instance representation
- Learning algorithm
- Clustering approach

Training Data Creation

- Creating training instances
 - texts annotated with coreference information

candidate antecedent

anaphor

- /
- one instance *inst(NP_i, NP_j)* for each *ordered* pair of NPs
 - » NP_i precedes NP_i
 - » feature vector: describes the two NPs and context
 - » class value:

coref pairs on the same coreference chain not coref otherwise

Instance Representation

- 25 features per instance
 - lexical (3)
 - » string matching for pronouns, proper names, common nouns
 - grammatical (18)
 - » pronoun_1, pronoun_2, demonstrative_2, indefinite_2, ...
 - » number, gender, animacy
 - » appositive, predicate nominative
 - » binding constraints, simple contra-indexing constraints, ...
 - » span, maximalnp, ...
 - semantic (2)
 - » same WordNet class
 - » alias
 - positional (1)
 - » distance between the NPs in terms of # of sentences
 - knowledge-based (1)
 - » naïve pronoun resolution algorithm

Learning Algorithm

- RIPPER (Cohen, 1995)
 C4.5 (Quinlan, 1994)
 - rule learners
 - » input: set of training instances
 - » output: coreference classifier

Learned classifier

- » input: test instance (represents pair of NPs)
- » output: classification confidence of classification

Clustering Algorithm

- Start with each NP in its own partition
- For each NP in the document
 - Consider each NP to its left
 - If ML algorithm says "coreferent", merge the partitions for the two NPs.

Evaluation

- MUC-6 and MUC-7 coreference data set
- documents annotated w.r.t. coreference
- 30 + 30 training texts (dry run)
- 30 + 20 test texts (formal evaluation)
- scoring program
 - recall
 - precision
 - F-measure: 2PR/(P+R)

Baselines...

Results

	MUC-6			MUC-7		
	R	Р	F	R	Р	F
Ng & Cardie	63.3	76.9	69.5	54.2	76.3	63.4
Best MUC System	59	72	6 5	56.1	68.8	61.8

```
ALIAS = C: +
ALIAS = I:
  SOON_STR_NONPRO = C:
    ANIMACY = NA: -
    ANIMACY = I: -
    ANIMACY = C: +
  SOON_STR_NONPRO = I:
    PRO\_STR = C: +
    PRO_STR = I:
      PRO_RESOLVE = C:
        EMBEDDED_1 = Y: -
        EMBEDDED 1 = N:
          PRONOUN_1 = Y:
            ANIMACY = NA: -
            ANIMACY = I: -
            ANIMACY = C: +
          PRONOUN_1 = N:
            MAXIMALNP = C: +
            MAXIMALNP = I:
              WNCLASS = NA: -
              WNCLASS = I: +
              WNCLASS = C: +
      PRO_RESOLVE = I:
        APPOSITIVE = I: -
        APPOSITIVE = C:
          GENDER = NA: +
          GENDER = I: +
          GENDER = C: -
```

Classifier for MUC-6 Data Set

Summary

- Performs better than the best non-learning approaches on two standard data sets
- Still lots of room for improvement
 - common noun resolution remains a major limiting factor