
Last Class:

1. The Earley Algorithm

2. Intro to Probabilistic Parsing

Today:

1. Parsing with PCFG’s

2. Intro to Question Answering
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Example

(a) S (b) S

Aux NP VP Aux NP VP

V NP NP V NP

Nom

Nom Nom

Pro PNoun Noun Pro PNoun Noun

can you book TWA flights can you book TWA flights

Rules P Rules P
S Aux NP VP .15 S Aux NP VP .15
NP Pro .40 NP Pro .40
VP V NP NP .05 VP V NP .40
NP Nom .05 NP Nom .05
NP PNoun .35 Nom PNoun Nom .05
Nom Noun .75 Nom Noun .75
Aux Can .40 Aux Can .40
NP Pro .40 NP Pro .40
Pro you .40 Pro you .40
Verb book .30 Verb book .30
PNoun TWA .40 Pnoun TWA .40
Noun flights .50 Noun flights .50
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Parsing with PCFGs

Produce the most likely parse for a given sentence:

T̂ (S) = argmaxT∈τ(S)P (T )

where τ(S) is the set of possible parse trees for S.

• Augment the Earley algorithm to compute the probability of each
of its parses.

When adding an entry E of category C to the chart using rule i

with n subconstituents, E1, . . . , En:

P (E) = P (rule i | C) ∗ P (E1) ∗ . . . ∗ P (En)

• probabilistic CYK (Cocke-Younger-Kasami) algorithm
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Problems with PCFGs

Do not model structural dependencies.

Often the choice of how a non-terminal expands depends on the
location of the node in the parse tree.

E.g. Strong tendency in English for the syntactic subject of a spoken
sentence to be a pronoun.

• 91% of declarative sentences in the Switchboard corpus are
pronouns (vs. lexical).

• In contrast, 34% of direct objects in Switchboard are pronouns.
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Problems with PCFGs

Do not adequately model lexical dependencies.

Moscow sent more than 100,000 soldiers into Afghanistan...

PP can attach to either the NP or the VP:
NP → NP PP or VP → V NP PP?

Attachment choice depends (in part) on the verb: send subcategorizes
for a destination (e.g. expressed via a PP that begins with into or to or
...).
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Probabilistic lexicalized CFGs

• Each non-terminal is associated with its head.

• Each PCFG rule needs to be augmented to identify one rhs
constituent to be the head daughter.

• Headword for a node in the parse tree is set to the headword of its
head daughter.

Slide CS474–6

Example

S(dumped)

NP(workers) VP(dumped)

NNS(workers) VBD(dumped) NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)

DT(a) NN(bin)

workers dumped sacks into a bin
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Probabilistic lexicalized CFGs

View a lexicalized (P)CFG as a simple (P)CFG with a lot more rules.

VP(dumped) → VBD(dumped) NP(sacks) PP(into) [3x10−10]
VP(dumped) → VBD(dumped) NP(cats) PP(into) [8x10−10]
VP(dumped) → VBD(dumped) NP(sacks) PP(above) [1x10−12]
...

Problem?
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Incorporating lexical dependency information

Incorporates lexical dependency information by:

1. relating the heads of phrases to the heads of their constituents;

2. including syntactic subcategorization information.

Syntactic subcategorization dependencies:

Probability of a rule r of syntactic category n:
p( r(n) | n, h(n) ).

Example: probability of expanding VP as VP → VBD NP PP will be
p (r | VP, dumped).
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Incorporating lexical dependency information

Condition the probability of a node n having a head h on two factors:

1. the syntactic category of the node n

2. the head of the node’s mother h(m(n))

p(h(n) = word i | n, h(m(n)))
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Computing the probability of a parse

Computing the probability of a particular parse for a given sentence
changes from:

P(T) =
∏

n∈T p(r(n))

to

P(T) =
∏

n∈T p(r(n)|n,h(n)) * p(h(n)|n,h(m(n)))
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Evaluation Measures and State of the Art

• labeled recall: # correct constituents in candidate parse of s / #
correct constituents in treebank parse of s

• labeled precision: # correct constituents in candidate parse of s /
total # of constituents in candidate parse of s

• crossing brackets: the number of crossed brackets

State of the art: 91-92% recall/, 1% crossed bracketed constituents per
sentence (WSJ treebank)
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