
Last Class: Parsing Intro

1. Grammars and parsing

Today: Parsing Algorithms

1. Top-down and bottom-up parsing

2. Chart parsers

3. Bottom-up chart parsing

Slide CS474–1

CFG’s

A context free grammar consists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols Σ (disjoint from N)

3. a set of productions, P, each of the form A → α, where A is a
non-terminal and α is a string of symbols from the infinite set of
strings (Σ ∪ N)∗

4. a designated start symbol S

Slide CS474–2

CFG example

CFG’s are also called phrase-structure grammars.
Equivalent to Backus-Naur Form (BNF).

1. S → NP VP 5. NAME → Beavis

2. VP → V NP 6. V → ate

3. NP → NAME 7. ART → the

4. NP → ART N 8. N → cat

• CFG’s are powerful enough to describe most of the structure in
natural languages.

• CFG’s are restricted enough so that efficient parsers can be built.

Slide CS474–3

Derivations

• If the rule A → β ∈ P , and α and γ are strings in the set (Σ ∪N)∗,
then we say that αAγ directly derives αβγ, or αAγ ⇒ αβγ

• Let α1, α2, . . . , αm be strings in (Σ ∪ N)∗, m > 1, such that

α1 ⇒ α2, α2 ⇒ α3, . . . , αm−1 ⇒ αm,

then we say that α1 derives αm or α1
∗⇒ αm

Slide CS474–4

LG

The language LG generated by a grammar G is the set of strings
composed of terminal symbols that can be derived from the designated
start symbol S.

LG = {w|w ∈ Σ∗, S ∗⇒ w}

Parsing: the problem of mapping from a string of words to its parse
tree according to a grammar G.

Slide CS474–5

General Parsing Strategies

Grammar Top-Down Bottom-Up

1. S → NP VP S → NP VP → NAME ate the cat

2. VP → V NP → NAME VP → NAME V the cat

3. NP → NAME → Beav VP → NAME V ART cat

4. NP → ART N → Beav V NP → NAME V ART N

5. NAME → Beavis → Beav ate NP → NP V ART N

6. V → ate → Beav ate ART N → NP V NP

7. ART → the → Beav ate the N → NP VP

8. N → cat → Beav ate the cat → S

Slide CS474–6

A Top-Down Parser

Input: CFG grammar, lexicon, sentence to parse
Output: yes/no

State of the parse: (symbol list, position)

1 The 2 old 3 man 4 cried 5

start state: ((S) 1)

Slide CS474–7

Grammar and Lexicon

Grammar:

1. S → NP VP 4. VP → v

2. NP → art n 5. VP → v NP

3. NP → art adj n

Lexicon:
the: art
old: adj, n
man: n, v
cried: v

1 The 2 old 3 man 4 cried 5

Slide CS474–8

Algorithm for a Top-Down Parser

PSL ← (((S) 1))

1. Check for failure. If PSL is empty, return NO.

2. Select the current state, C. C ← pop (PSL).

3. Check for success. If C = (() <final-position>), YES.

4. Otherwise, generate the next possible states.

(a) s1 ← first-symbol(C)

(b) If s1 is a lexical symbol and next word can be in that class, create

new state by removing s1, updating the word position, and adding it

to PSL. (I’ll add to front.)

(c) If s1 is a non-terminal, generate a new state for each rule in the

grammar that can rewrite s1. Add all to PSL. (Add to front.)

Slide CS474–9

Example

Current state Backup states

1. ((S) 1)

2. ((NP VP) 1)

3. ((art n VP) 1) ((art adj n VP) 1)

4. ((n VP) 2) ((art adj n VP) 1)

5. ((VP) 3) ((art adj n VP) 1)

6. ((v) 3) ((v NP) 3) ((art adj n VP) 1)

7. (() 4) ((v NP) 3) ((art adj n VP) 1) Backtrack

Slide CS474–10

8. ((v NP) 3) ((art adj n VP) 1) leads to backtracking

...

9. ((art adj n VP) 1)

10. ((adj n VP) 2)

11. ((n VP) 3)

12. ((VP) 4)

13. ((v) 4) ((v NP) 4)

14. (() 5) ((v NP) 4)

YES

DONE!

Slide CS474–11

Problems with the Top-Down Parser

1. Only judges grammaticality.

2. Stops when it finds a single derivation.

3. No semantic knowledge employed.

4. No way to rank the derivations.

5. Problems with left-recursive rules.

6. Problems with ungrammatical sentences.

Slide CS474–12

Efficient Parsing

The top-down parser is terribly inefficient.

Have the first year Phd students in the computer science
department take the Q-exam.

Have the first year Phd students in the computer science
department taken the Q-exam?

Slide CS474–13

Chart Parsers

chart: data structure that stores partial results of the parsing process
in such a way that they can be reused. The chart for an n-word
sentence consists of:

• n + 1 vertices

• a number of edges that connect vertices

0 1 2 3 4 5

S-> NP . VP VP->V NP .

S-> NP VP .

Judge Ito scolded the defense.

Slide CS474–14

Chart Parsing: The General Idea

The process of parsing an n-word sentence consists of forming a chart
with n + 1 vertices and adding edges to the chart one at a time.

• Goal: To produce a complete edge that spans from vertex 0 to n

and is of category S.

• There is no backtracking.

• Everything that is put in the chart stays there.

• Chart contains all information needed to create parse tree.

Slide CS474–15

Bottom-UP Chart Parsing Algorithm

Do until there is no input left:

1. If the agenda is empty, get next word from the input, look up word
categories, add to agenda (as constituent spanning two postions).

2. Select a constituent from the agenda: constituent C from p1 to p2.

3. Insert C into the chart from position p1 to p2.

4. For each rule in the grammar of form X → C X1 . . .Xn, add an
active edge of form X → C ◦ X1 . . .Xn from p1 to p2.

Slide CS474–16

5. Extend existing edges that are looking for a C.

(a) For any active edge of form X → X1 . . . ◦ CXn from p0 to p1,
add a new active edge X → X1 . . . C ◦ Xn from p0 to p2.

(b) For any active edge of form X → X1 . . .Xn ◦ C from p0 to p1,
add a new (completed) constituent of type X from p0 to p2 to
the agenda.

Slide CS474–17

Grammar and Lexicon

Grammar:

1. S → NP VP 3. NP → ART ADJ N

2. NP → ART N 4. VP → V NP

Lexicon:

the: ART man: N, V

old: ADJ, N boat: N

Sentence: 1 The 2 old 3 man 4 the 5 boat 6

Slide CS474–18

Example

[See .ppt slides]

Slide CS474–19

1 2 3 4 5
The old man the boat.

ART1 ADJ1 N2 ART2

NP1 (rule 2)

NP2 (rule 3)

S (rule 1)

NP->ART . N

NP->ART . ADJ N

NP -> ART ADJ . N

S -> NP . VP

S -> NP . VP

V1

VP -> V . NP

VP1

6

N3

NP->ART . N

NP->ART . ADJ N

NP1 (rule 2)

VP2 (rule 4)

Slide CS474–20

Bottom-up Chart Parser

Is it any less naive than the top-down parser?

1. Only judges grammaticality.[fixed]

2. Stops when it finds a single derivation.[fixed]

3. No semantic knowledge employed.

4. No way to rank the derivations.

5. Problems with ungrammatical sentences.[better]

6. Terribly inefficient.

Slide CS474–21

