CFG’s

Last Class: Parsing Intro A context free grammar consists of:

1. Grammars and parsing 1. a set of non-terminal symbols N
Today: Parsing Algorithms 2. a set of terminal symbols ¥ (disjoint from N)
1. Top-down and bottom-up parsing 3. a set of productions, P, each of the form A — «, where A is a
2. Chart parsers non-terminal and « is a string of symbols from the infinite set of

11 1 *
3. Bottom-up chart parsing strings (X U N)

4. a designated start symbol §

Slide CS474-1 Slide CS474-2

CFG example

CFG’s are also called phrase-structure grammars.

Equivalent to Backus-Naur Form (BNF). Derivations

e If the rule A — 8 € P, and « and + are strings in the set (X U N)*,

1. S NP VP 5. NAME Beavi

- T beavis then we say that a A~ directly derives a3y, or aAvy = afy
2. VP —- V NP 6. V — ate
4 NP NAME 7 ART — the o Let aj,an,...,amy, be strings in (XU N)*, m > 1, such that
4. NP — ART N 8. N — cat Q1 = Q9,00 = Q3, ..., Up_1 = Qs

e CFG’s are powerful enough to describe most of the structure in ] «
then we say that oy derives «,,, or a1 = a,,
natural languages.

e CFG’s are restricted enough so that efficient parsers can be built.

Slide CS474-3 Slide CS474—4




General Parsing Strategies
Lg
Grammar Top-Down Bottom-Up
The 1 L ted b is the set of stri
e language Lg .genera ed by a grammar G 1.s e set of s rlng.s 1 S NP VP S - NP VP T, NAME ate the cat
composed of terminal symbols that can be derived from the designated
2. VP — V NP — NAME VP — NAME V the cat
start symbol S.
3. NP - NAME — Beav VP — NAME V ART cat
« 4. NP - ART N — Beav V NP — NAME V ART N
L ={wlw e £*,5 = w}
5. NAME — Beavis — Beav ate NP — NP V ART N
. ; ; 6. V — ate — Beav ate ART N — NP V NP
Parsing: th bl i tri ds to it
arsing fz problem of mapping from a string of words to its parse 7 ART — the _, Beav ate the N _, NP VP
tree according to a grammar G.
8. N — cat — Beav ate the cat — S
Slide CS474-5 Slide CS474—-6

Grammar and Lexicon

A Top-Down Parser Grammar:
. 1. S —- NP VP 4. VP — v
Input: CFG grammar, lexicon, sentence to parse
2. NP — art n 5 VP — v NP

Output: yes/no

State of the parse: (symbol list, position) 3. NP — art adj n

. Lexicon:
1 The 2 old 3 Iman 4 cried 5
the: art

start state: ((S) 1) old: adj, n
man: n, v

cried: v

1 The 5 old 3 man 4 cried 5

Slide CS474-7 Slide CS474-8




PSL < (((S) 1))

Algorithm for a Top-Down Parser

1. Check for failure. If PSL is empty, return NO.

2. Select the current state, C. C «— pop (PSL).

3. Check for success. If C = (() <final-position>), YES.

4. Otherwise, generate the next possible states.

(a) s1 « first-symbol(C)

(b) If s1 is a lexical symbol and next word can be in that class, create

new state by removing s1, updating the word position, and adding it

to PSL. (I'll add to front.)

(¢) If s1 is a non-terminal, generate a new state for each rule in the

grammar

that can rewrite s;. Add all to PSL. (Add to front.)

Slide CS474-9

Current state

Example

Backup states

((art adj n VP) 1)
((art adj n VP) 1)
((art adj n VP) 1)
((v NP) 3) ((art adj n VP) 1)
((v NP) 3) ((art adj n VP) 1)

Backtrack

Slide CS474-10

8. ((v NP) 3) ((art adj n VP) 1) leads to backtracking
9. ((art adj n VP) 1)
10. ((adj n VP) 2)
11. ((n VP) 3)
12. ((VP) 4)
13. ((+) 4) (v NP) 4)
14. () 5) (v NP) 4)
YES
DONE!

Slide CS474-11

Problems with the Top-Down Parser

1. Only judges grammaticality.

o v oA W

Stops when it finds a single derivation.
No semantic knowledge employed.

No way to rank the derivations.
Problems with left-recursive rules.

Problems with ungrammatical sentences.

Slide CS474-12




Efficient Parsing

The top-down parser is terribly inefficient.

Have the first year Phd students in the computer science
department take the Q-exam.

Have the first year Phd students in the computer science
department taken the Q-exam?

Slide CS474-13

Chart Parsers

chart: data structure that stores partial results of the parsing process
in such a way that they can be reused. The chart for an n-word

sentence consists of:
e n + 1 vertices
e a number of edges that connect vertices

Judge Ito _scolded the defense.
0O——1—2—3—

S->NP . VP VP->V NP .

S->NP VP.

Slide CS474-14

Chart Parsing: The General Idea

The process of parsing an n-word sentence consists of forming a chart
with n + 1 vertices and adding edges to the chart one at a time.

e Goal: To produce a complete edge that spans from vertex 0 to n
and is of category S.

e There is no backtracking.
e Everything that is put in the chart stays there.

e Chart contains all information needed to create parse tree.

Slide CS474-15

Bottom-UP Chart Parsing Algorithm
Do until there is no input left:

1. If the agenda is empty, get next word from the input, look up word
categories, add to agenda (as constituent spanning two postions).

2. Select a constituent from the agenda: constituent C' from p; to po.
3. Insert C into the chart from position p; to pa.

4. For each rule in the grammar of form X — C X; ... X, add an
active edge of form X — Co X7 ... X, from p; to po.

Slide CS474-16




5. Extend existing edges that are looking for a C.
(a) For any active edge of form X — X;...0CX, from py to pi,
add a new active edge X — X;...C o X, from pgy to ps.
(b) For any active edge of form X — X;...X, oC from pg to p1,
add a new (completed) constituent of type X from pg to p2 to
the agenda.

Grammar and Lexicon

Grammar:

1. S — NP VP 3. NP — ART ADJ N
2. NP —- ART N 4. VP — V NP
Lexicon:

the: ART man: N, V

old: ADJ, N boat: N

Sentence: ; The 5 old 3 man 4 the 5 boat ¢

Slide CS474-17

Slide CS474-18

Example

[See .ppt slides]

S (rule 1)

NP2 (rule 3) VP2 (rule 4)
/NPl (rule 2) )A31 \ NP1 (rulex
The ZLd\3/ man \4 / the5 boat. \6
| /\ /
ART1 ADJ1 \l\/lf ART2 N3

1

NP->ART . N NP->ART . N
NP->ART . ADJ N NP->ART . ADJ N
—_—

NP -> ART ADJ . N

—_—

S->NP.VP

—_—
VP ->V . NP

S->NP.VP

Slide CS474-19

Slide CS474-20




Bottom-up Chart Parser

Is it any less naive than the top-down parser?

1.

Ll

Only judges grammaticality. [fixed]
Stops when it finds a single derivation. [fixed]
No semantic knowledge employed.

No way to rank the derivations.

5. Problems with ungrammatical sentences. better]

Terribly inefficient.

Slide CS474-21




