
Last Class: Smoothing

Today: Parsing Intro

1. Grammars and parsing

2. Top-down and bottom-up parsing

Slide CS474–1

Syntax

syntax: from the Greek syntaxis, meaning “setting out together or
arrangement.”
Refers to the way words are arranged together.

Why worry about syntax?

• The boy ate the frog.

• The frog was eaten by the boy.

• The frog that the boy ate died.

• The boy whom the frog was eaten by died.

Slide CS474–2

Syntactic Analysis

Key ideas:

• constituency: groups of words may behave as a single unit or phrase

• grammatical relations: refer to the subject, object, indirect

object, etc.

• subcategorization and dependencies: refer to certain kinds of

relations between words and phrases, e.g. want can be followed by an

infinitive, but find and work cannot.

All can be modeled by various kinds of grammars that are based on
context-free grammars.

Slide CS474–3

Grammars and Parsing

Need a grammar: a formal specification of the structures allowable in
the language.

Need a parser: algorithm for assigning syntactic structure to an input
sentence.

Sentence Parse Tree

Beavis ate the cat.
S

NP VP

NAME V NP

Beavis ate

ART N

the cat

Slide CS474–4



CFG example

CFG’s are also called phrase-structure grammars.
Equivalent to Backus-Naur Form (BNF).

1. S → NP VP 5. NAME → Beavis

2. VP → V NP 6. V → ate

3. NP → NAME 7. ART → the

4. NP → ART N 8. N → cat

• CFG’s are powerful enough to describe most of the structure in
natural languages.

• CFG’s are restricted enough so that efficient parsers can be built.

Slide CS474–5

CFG’s

A context free grammar consists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols Σ (disjoint from N)

3. a set of productions, P, each of the form A → α, where A is a
non-terminal and α is a string of symbols from the infinite set of
strings (Σ ∪ N)∗

4. a designated start symbol S

Slide CS474–6

Derivations

• If the rule A → β ∈ P , and α and γ are strings in the set (Σ ∪N)∗,
then we say that αAγ directly derives αβγ, or αAγ ⇒ αβγ

• Let α1, α2, . . . , αm be strings in (Σ ∪ N)∗, m > 1, such that

α1 ⇒ α2, α2 ⇒ α3, . . . , αm−1 ⇒ αm,

then we say that α1 derives αm or α1
∗⇒ αm

Slide CS474–7

LG

The language LG generated by a grammar G is the set of strings
composed of terminal symbols that can be derived from the designated
start symbol S.

LG = {w|w ∈ Σ∗, S ∗⇒ w}

Parsing: the problem of mapping from a string of words to its parse
tree according to a grammar G.

Slide CS474–8



General Parsing Strategies

Grammar Top-Down Bottom-Up

1. S → NP VP S → NP VP → NAME ate the cat

2. VP → V NP → NAME VP → NAME V the cat

3. NP → NAME → Beav VP → NAME V ART cat

4. NP → ART N → Beav V NP → NAME V ART N

5. NAME → Beavis → Beav ate NP → NP V ART N

6. V → ate → Beav ate ART N → NP V NP

7. ART → the → Beav ate the N → NP VP

8. N → cat → Beav ate the cat → S

Slide CS474–9

A Top-Down Parser

Input: CFG grammar, lexicon, sentence to parse
Output: yes/no

State of the parse: (symbol list, position)

1 The 2 old 3 man 4 cried 5

start state: ((S) 1)

Slide CS474–10

Grammar and Lexicon

Grammar:

1. S → NP VP 4. VP → v

2. NP → art n 5. VP → v NP

3. NP → art adj n

Lexicon:
the: art
old: adj, n
man: n, v
cried: v

1 The 2 old 3 man 4 cried 5

Slide CS474–11

Algorithm for a Top-Down Parser

PSL ← (((S) 1))

1. Check for failure. If PSL is empty, return NO.

2. Select the current state, C. C ← pop (PSL).

3. Check for success. If C = (() <final-position>), YES.

4. Otherwise, generate the next possible states.

(a) s1 ← first-symbol(C)

(b) If s1 is a lexical symbol and next word can be in that class, create

new state by removing s1, updating the word position, and adding it

to PSL. (I’ll add to front.)

(c) If s1 is a non-terminal, generate a new state for each rule in the

grammar that can rewrite s1. Add all to PSL. (Add to front.)

Slide CS474–12



Example

Current state Backup states

1. ((S) 1)

2. ((NP VP) 1)

3. ((art n VP) 1) ((art adj n VP) 1)

4. ((n VP) 2) ((art adj n VP) 1)

5. ((VP) 3) ((art adj n VP) 1)

6. ((v) 3) ((v NP) 3) ((art adj n VP) 1)

7. (() 4) ((v NP) 3) ((art adj n VP) 1) Backtrack

Slide CS474–13

8. ((v NP) 3) ((art adj n VP) 1) leads to backtracking

...

9. ((art adj n VP) 1)

10. ((adj n VP) 2)

11. ((n VP) 3)

12. ((VP) 4)

13. ((v) 4) ((v NP) 4)

14. (() 5) ((v NP) 4)

YES

DONE!

Slide CS474–14

Problems with the Top-Down Parser

1. Only judges grammaticality.

2. Stops when it finds a single derivation.

3. No semantic knowledge employed.

4. No way to rank the derivations.

5. Problems with left-recursive rules.

6. Problems with ungrammatical sentences.

Slide CS474–15

Efficient Parsing

The top-down parser is terribly inefficient.

Have the first year Phd students in the computer science
department take the Q-exam.

Have the first year Phd students in the computer science
department taken the Q-exam?

Slide CS474–16


