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Foundations of Artificial Intelligence

First-Order Logic

CS472 – Fall 2007
Thorsten Joachims

First-Order Logic
• Idea:

– Don’t treat propositions as “atomic” entities.
• First-Order Logic:

– Objects: cs472, fred, ph219, emptylist …
– Relations/Predicates: is_Man(fred), Located(cs472, ph219) …

• Note: Relations typically correspond to verbs
– Functions: Pair(search,Pair(learning,Pair(kbsystems, emptylist)))
– Connectives: ∧, ∨ , ¬, ⇒, ⇔
– Quantifiers: 

• Universal: ∀ x: ( is_Man(x) ⇒ is_Mortal(x) )
• Existential: ∃ y: ( is_Father(y, fred) ) 

Example: 
Representing Facts in First-Order Logic

1. Lucy* is a professor

2. All professors are people.

3. Fuchs is the dean.

4. Deans are professors.

5. All professors consider the dean a friend or don’t know him.

6. Everyone is a friend of someone.

7. People only criticize people that are not their friends. 

8. Lucy criticized Fuchs. 

* Name changed for privacy reasons.

Example: Proof
Knowledge base:
• is-prof(lucy)
• ∀ x ( is-prof(x) → is-person(x) )
• is-dean(fuchs)
• ∀ x (is-dean(x) is-prof(x))
• ∀ x (∀ y ( is-prof(x) ∧ is-dean(y) → is-friend-of(y,x) ∨ ¬ knows(x, y) ) )
• ∀ x (∃ y ( is-friend-of (y, x) ) )
• ∀ x (Vy (is-person(x) ∧ is-person(y) ∧ criticize (x,y) → ¬ is-friend-of (y,x)))
• criticize(lucy,fuchs)

Question: Is Fuchs no friend of Lucy?
¬ is-friend-of(fuchs,lucy)

Knowledge Engineering

1. Identify the task. 
2. Assemble the relevant knowledge.
3. Decide on a vocabulary of predicates, functions, and 

constants. 
4. Encode general knowledge about the domain.
5. Encode a description of the specific problem instance. 
6. Pose queries to the inference procedure and get answers. 
7. Debug the knowledge base. 

Inference Procedures: Theoretical Results
• There exist complete and sound proof procedures for propositional 

and FOL. 
– Propositional logic

• Use the definition of entailment directly. Proof procedure is 
exponential in n, the number of symbols. 

• In practice, can be much faster…
• Polynomial-time inference procedure exists when KB is expressed 

as Horn clauses:         
where the Pi and Q are non-negated atoms. 

– First-Order logic
• Godel’s completeness theorem showed that a proof procedure 

exists…
• But none was demonstrated until Robinson’s 1965 resolution 

algorithm. 
• Entailment in first-order logic is semidecidable. 
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Resolution Rule of Inference
General Rule:

Example:

Note: Eij can be negated.

Algorithm: Resolution Proof
• Negate the theorem to be proved, and add the result to the 

knowledge base. 
• Bring knowledge base into conjunctive normal form (CNF) 

– CNF: conjunctions of disjunctions
– Each disjunction is called a clause.

• Until there is no resolvable pair of clauses,
– Find resolvable clauses and resolve them.
– Add the results of resolution to the knowledge base.
– If NIL (empty clause) is produced, stop and report that the 

(original) theorem is true.

• Report that the (original) theorem is false. 

Resolution Example: Propositional Logic
• To prove: ¬ P
• Transform Knowledge Base into CNF

• Proof
1. ¬ P ∨ Q Sentence 1
2. ¬ Q ∨ R Sentence 2
3. ¬ R Sentence 3
4. P Assume opposite
5. Q Resolve 4 and 1
6. R Resolve 5 and 2
7. nil Resolve 6 with 3

Resolution Example: FOL
Example: Prove bird (tweety)

Axioms:   Regular CNF

1:

2:

3:

4:
Resolution Proof
1. Resolve 3 and 1, specializing (i.e. “unifying”) tweety for x. 

Add ¬feathers(tweety)
2. Resolve 4 and 2. Add NIL.

Resolution Theorem Proving
Properties of Resolution Theorem Proving:

– sound (for propositional and FOL)

– (refutation) complete (for propositional and FOL)

Procedure may seem cumbersome but note that can be 
easily automated. Just “smash” clauses until empty 
clause or no more new clauses. 

Unification
Unify procedure: Unify(P,Q) takes two atomic (i.e. single 

predicates) sentences P and Q and returns a substitution 
that makes P and Q identical. 

Rules for substitutions: 
– Can replace a variable by a constant.
– Can replace a variable by a variable.
– Can replace a variable by a function expression, as long 

as the function expression does not contain the variable.

Unifier: a substitution that makes two clauses resolvable.
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Unification - Purpose
Given: 

¬ Knows (John, x) ∨ Hates (John, x)
Knows (John, Jim)

Derive:
Hates (John, Jim)

Unification:

Need unifier {x/Jim} for resolution to work.
Add to knowledge base:

Unification (example)
Who does John hate? 

∃ x: Hates (John, x) 
Knowledge base (in clause form): 

1. ¬ Knows (John, v) ∨ Hates (John, v)
2. Knows (John, Jim)
3. Knows (y, Leo)
4. Knows (z, Mother(z))
5. ¬ Hates (John, x)          (since ¬ ∃ x: Hates (John, x) ∀ x: ¬Hates(John,x))

Resolution with 5 and 1:
unify(Hates(John, x), Hates(John, v)) = {x/v}

6. ¬ Knows (John, v) 
Resolution with 6 and 2: 

unify(Knows(John, v), Knows(John, Jim))= {v/Jim}
or resolution with 6 and 3: 

unify(Knows (John, v), Knows (y, Leo)) = {y/John, v/Leo}
or Resolution with 6 and 4: 

unify(Knows (John, v), Knows (z, Mother(z))) = {z/John, v/Mother(z)}
Answers:

1. Hates(John,x) with {x/v, v/Jim} (i.e. John hates Jim)
2. Hates(John,x) with {x/v, y/John, v/Leo} (i.e. John hates Leo)
3. Hates(John,x) with {x/v, v/Mother(z), z/John} (i.e. John hates his mother)

Most General Unifier
In cases where there is more than one substitution choose the one that 

makes the least commitment (most general) about the bindings. 
UNIFY (Knows (John,x), Knows (y,z))

= {y / John, x / z}
not {y / John, x / z, z / Freda}
not {y / John, x / John, z / John}
…

See R&N for general unification algorithm. O(n2) with Refutation

Converting More Complicated Sentences to 
CNF

1. Eliminate Implications
Substitute     ¬ E1 ∨ E2 for E1 → E2

2. Move negations down to the atomic formulas
Equivalence Transformations:

Result:
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3. Eliminate Existential Quantifiers: 
Skolemization

Harder cases:

There is one argument for each universally quantified 
variable whose scope contains the Skolem function.

Easy case: 

4. Rename variables as necessary

We want no two variables of the same name.

5. Move the universal quantifiers to the left

This works because each quantifier uses a unique variable name.

6. Move disjunctions down to the literals

7. Eliminate the conjunctions 8. Rename all variables, as necessary, so no 
two have the same name
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9. Eliminate the universal quantifiers

Algorithm: Putting Axioms into Clausal Form
1. Eliminate the implications.

2. Move the negations down to the atomic formulas.

3. Eliminate the existential quantifiers. 

4. Rename the variables, if necessary.

5. Move the universal quantifiers to the left.

6. Move the disjunctions down to the literals. 

7. Eliminate the conjunctions.

8. Rename the variables, if necessary.

9. Eliminate the universal quantifiers. 

Resolution Proofs as Search
• Search Problem

– States: Content of knowledge base in CNF
– Initial state: Knowledge base with negated theorem to prove
– Successor function: Resolution inference rule with unify
– Goal test: Does knowledge base contain the empty clause ’nil’

• Search Algorithm
– Depth first search (used in PROLOG)

• Note: Possibly infinite state space
• Example: 

– IsPerson(Fred)
– IsPerson(y) IsPerson(mother(y))
– Goal: ∃ x: IsPerson(x)
– Answers: {x/Fred} and {x/mother(Fred)} and 

{x/mother(mother(Fred))} and …

Strategies for Selecting Clauses

unit-preference strategy: Give preference to resolutions 
involving the clauses with the smallest number of literals. 

set-of-support strategy: Try to resolve with the negated theorem 
or a clause generated by resolution from that clause. 

subsumption: Eliminates all sentences that are subsumed (i.e., 
more specific than) an existing sentence in the KB. 

May still require exponential time. 

Example

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat? 

Original Sentences (Plus Background Knowledge)
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Conjunctive Normal Form
(D is a placeholder for the dogs unknown name 
(i.e. Skolem symbol/function). Think of D like 
“JohnDoe”)   

Proof by Resolution
¬ kills(Curiosity,Tuna) kills(Jack,Tuna) ∨ kills(Curiosity,Tuna)

kills(Jack,Tuna) ¬ AnimalLover(w) ∨ ¬ Animal(y) ∨ ¬ kills(w,y)

¬ AnimalLover(Jack) ∨ ¬ Animal(Tuna)

¬ AnimalLover(Jack) ∨ ¬ Cat(Tuna)

Animal(z) ∨ ¬ Cat(z)

Cat(Tuna)

¬ AnimalLover(Jack) ¬ Dog(y) ∨ ¬ Owns(x,y) ∨ AnimalLover(x)

¬ Dog(y) ∨ ¬ Owns(Jack,y)¬ Dog(D)

Owns(Jack,D)

¬ Owns(Jack,D)

NIL

{}

{w/Jack, y/Tuna}

{z/Tuna}

{}

{x/Jack}

{y/D}

Proofs can be Lengthy
A relatively straightforward KB can quickly overwhelm general resolution 

methods. 

Resolution strategies reduce the problem somewhat, but not completely. 

As a consequence, many practical Knowledge Representation formalisms 
in AI use a restricted form and specialized inference. 

– Logic programming (Prolog)

– Production systems

– Frame systems and semantic networks

– Description logics

Successes in Rule-Based Reasoning
Expert systems

• DENDRAL (Buchanan et al., 1969)

• MYCIN (Feigenbaum, Buchanan, Shortliffe)

• PROSPECTOR (Duda et al., 1979)

• R1 (McDermott, 1982)

Successes in Rule-Based Reasoning
• DENDRAL (Buchanan et al., 1969)

– Infers molecular structure from the information provided by 
a mass spectrometer

– Generate-and-test method

• MYCIN (Feigenbaum, Buchanan, Shortliffe)
– Diagnosis of blood infections
– 450 rules; performs as well as experts
– Incorporated certainty factors

Successes in Rule-Based Reasoning
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• PROSPECTOR (Duda et al., 1979)
– Correctly recommended exploratory drilling at geological site
– Rule-based system founded on probability theory

• R1 (McDermott, 1982)
– Designs configurations of computer components
– About 10,000 rules
– Uses meta-rules to change context

Successes in Rule-Based Reasoning Cognitive Modeling with Rule-Based Systems

SOAR is a general architecture for building intelligent 
systems.
– Long term memory consists of rules
– Working memory describes current state
– All problem solving, including deciding what rule to 

execute, is state space search
– Successful rule sequences are chunked into new rules
– Control strategy embodied in terms of meta-rules

Prolog (Programming in Logic)
• What is Prolog?

– Full-featured programming language
– Programs consist of logical formulas
– Running a program means proving a theorem

• Syntax of Prolog
– Predicates, objects, and functions: 

• cat(tuna), append(a,pair(b))
– Variables: X, Y, List (capitalized)
– Facts: 

• university(cornell).
• prepend(a,pair(a,X)).

– Rules: 
• animal(X) :- cat(X). 
• student(X) :- person(X), enrolled(X,Y), university(Y).

implication “:-” with single predicate on left and only non-negated predicates 
on the right. All variables implicitly “forall” quantified.

– Queries:
• student(X).

All variables implicitly “exists” quantified.

Programming in Prolog
• Path Finding
path(Node1,Node2) :- edge(Node1,Node2).
path(Node1,Node2) :-

edge(Node1,SomeNode), 
path(SomeNode,Node2).

edge(ith,lga).
edge(ith,phl).
edge(phl,sfo).
edge(lga,ord).
• Query

– path(ith,ord).
– path(ith,X).

Programming in Prolog
• Data structures: Lists

length([],0). 
length([H|T],N) :- length(T,M), N is M+1. 

member(X,[X|List]). 
member(X,[Element|List]) :- member(X,List). 

append([],List,List).
append([Element|L1],L2,[Element|L1L2]) :-

append(L1,L2,L1L2). 
• Query:

– length([a,b,c],3).
– length([a,b,c],X).
– member(b,[a,b,c]).
– member(X,[a,b,c]).

Programming in Prolog
Example: Symbolic derivatives (http://cs.wwc.edu/~cs_dept/KU/PR/Prolog.html)

% deriv(Polynomial, variable, derivative) 
% dc/dx = 0 
deriv(C,X,0) :- number(C). 
% dx/dx} = 1 
deriv(X,X,1). 
% d(cv)/dx = c(dv/dx) 
deriv(C*U,X,C*DU) :- number(C), deriv(U,X,DU). 
% d(u v)/dx = u(dv/dx) + v(du/dx) 
deriv(U*V,X,U*DV + V*DU) :- deriv(U,X,DU), deriv(V,X,DV). 
% d(u ± v)/dx = du/dx ± dv/dx
deriv(U+V,X,DU+DV) :- deriv(U,X,DU), deriv(V,X,DV). 
deriv(U-V,X,DU-DV) :- deriv(U,X,DU), deriv(V,X,DV). 
% du^n/dx = nu^{n-1}(du/dx) 
deriv(U^+N,X,N*U^+N1*DU) :- N1 is N-1, deriv(U,X,DU). 
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Programming in Prolog
• Towers of Hanoi: move N disks from pin a to pin b 

using pin c. 
hanoi(N):-hanoi(N, a, b, c). 
hanoi(0,A,B,C).
hanoi(N,FromPin,ToPin,UsingPin):-

M is N-1,
hanoi(M,FromPin,UsingPin,ToPin),
move(FromPin,ToPin),
hanoi(M,UsingPin,ToPin,FromPin).

move(From,To):-
write([move, disk from, pin, From, to, pin,
ToPin]),nl.

Programming in Prolog
• 8-Queens:
solve(P) :-

perm([1,2,3,4,5,6,7,8],P),
combine([1,2,3,4,5,6,7,8],P,S,D), 
all_diff(S), 
all_diff(D). 

combine([X1|X],[Y1|Y],[S1|S],[D1|D]) :-
S1 is X1 +Y1, 
D1 is X1 - Y1, 
combine(X,Y,S,D). 

combine([],[],[],[]). 
all_diff([X|Y]) :- \+member(X,Y), all_diff(Y).
all_diff([X]). 

Properties of Knowledge-Based Systems
Advantages

1. Expressibility*
2. Simplicity of inference procedures*
3. Modifiability*
4. Explainability
5. Machine readability
6. Parallelism*

Disadvantages
1. Difficulties in expressibility
2. Undesirable interactions among rules
3. Non-transparent behavior
4. Difficult debugging
5. Slow
6. Where does the knowledge base come from???


