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Outline

« Transform a linear learner into a non-linear learner
« Kernels can make high-dimensional spaces tractable
« Kernels can make non-vectorial data tractable

Non-Linear Problems

Problem:

« some tasks have non-linear structure

« no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?

Extending the Hypothesis Space

Idea: add more features

Input Space
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[ Feature Space
= Learn linear rule in feature space.
Example:
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= The separating hyperplane in feature space is degree
two polynomial in input space.

Example

* Input Space: ¥ = (x1.x2) (2 attributes)
« Feature Space: ®(¥) = (.J.‘%. J% V2r1, V219, v22120,1)
(6 attributes)
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Dual (Batch) Perceptron Algorithm

Input: § = ((Z1,71), - (En,un)), F €RY, g € {-1,1},

1e1,2,.]
Dual Algorithm: Primal Algorithm:
eVie[l.n]:a;=0 e =0 k=0
e repeat e repeat
—FOR =1 TO=n —FOR:i=1TOn
* TF (Y0 op{ 7)) <O * IF (i - %) < O
ap=o;+1 - = F
* ENDIF * ENDIF
— ENDFOR — ENDFOR
e until I iterations reached e until I iterations reached




Dual SVM Optimization Problem
« Primal Optimization Problem

n
minimize:  P(@,b,£) = %u?-ﬁ+ c Y
=1
subject to: Vi, twl[d- &+ >1—§

Vig:4>0
¢ Dual Optimization Problem
— ox [non o
maximize:  D(&) = . a;— 5 33 vy (E - &)
i=1 i=1j=1
n
subject to: 3 gy =20
i=1
VE,:0<05<C
* Theorem: If w* is the solution qf the Primal and a* is the
solution of the Dual, then & = 3~ aju#
i=1

Kernels

Problem: Very many Parameters! Polynomials of degree p
over N attributes in input space lead to attributes in feature
space!

Solution: [Boser et al.] The dual OP depends only on inner
products => Kernel Functions

K(d.b) = ©(d) - o(h)

Example: For &(7) = (27,23, V221, v222, V22172, 1)
calculating K (@, b) = [@- b+ 1]2 computes inner product
in feature space.

=>» no need to represent feature space explicitly.

SVM with Kernel
n PR
Training:  maximize: (&) = Y a;— = SN viyjoue K(F;, &)
=1 i=15=1
n
subject to: )y =0
=1
Vi1:0<ay<C

Classification: h(#) — siy:r( [L u,-y,q>(f,)] -¢(:-)+¢.)

]

sign (2”: oy (F, T) 4 b)
i=1

New hypotheses spaces through new Kernels:
Linear: K(d.b) =a.b

Polynomial: F (&) = [@- b+ 1]¢

Radial Basis Function: i (. 5) = exp{ —+[d@ — 5]%)
Sigmoid: K (i, ) = tanh(i- &)

Examples of Kernels

Polynomial Radial Basis Function
K@ b =[i-E+1)2 K(d.B) = exp(—~[d — B)2)

Kernels for Non-Vectorial Data

« Applications with Non-Vectorial Input Data
-> classify non-vectorial objects
— Protein classification (x is string of amino acids)
— Drug activity prediction (x is molecule structure)
— Information extraction (x is sentence of words)
— Etc.
« Applications with Non-Vectorial Output Data
- predict non-vectorial objects
— Natural Language Parsing (y is parse tree)
— Noun-Phrase Co-reference Resolution (y is clustering)
— Search engines (y is ranking)
=» Kernels can compute inner products efficiently!

Properties of SVMs with Kernels

* Expressiveness

— Can represent any boolean function (for appropriate choice
of kernel)

— Can represent any sufficiently “smooth” function to
arbitrary accuracy (for appropriate choice of kernel)
« Computational
— Objective function has no local optima (only one global)
— Independent of dimensionality of feature space
« Design decisions
— Kernel type and parameters
— Value of C




