
1

Foundations of Artificial Intelligence

Reinforcement Learning

CS472 – Fall 2007
Thorsten Joachims

Reinforcement Learning
• Problem

– Make sequence of decisions (policy) to get to goal / maximize utility
• Search Problems so far

– Known environment
• State space
• Consequences of actions
• Probability distribution of non-deterministic elements

– Known utility / cost function
– First compute the sequence of decisions, then execute (potentially re-

compute)
• Real-World Problems

– Environment is unknown a priori and needs to be explored
– Utility function unknown – only examples are available for some states

• No feedback on individual actions
• Learn to act and to assign blame/credit to individual actions

– Need to quickly react to unforeseen events (have learned what to do)

Reinforcement Learning
• Issues

– Agent knows the full environment a priori vs. unknown
environment

– Agent can be passive (watch) or active (explore)
– Feedback (i.e. rewards) in terminal states only; or a bit of

feedback in any state
– How to measure and estimate the utility of each action
– Environment fully observable, or partially observable
– Have model of environment and effects of action…or not

Reinforcement Learning will address these issues!

Markov Decision Process
• Representation of Environment:

– finite set of states S
– set of actions A for each state s ∈ S

• Process
– At each discrete time step, the agent

• observes state st ∈ S and then
• chooses action at ∈ A.

– After that, the environment
• gives agent an immediate reward rt

• changes state to st+1 (can be probabilistic)

Markov Decision Process
• Model:

– Initial state: S0

– Transition function: T(s,a,s’)
T(s,a,s’) is the probability of moving from state s to s’

when executing action a.
– Reward function: R(s)

Real valued reward that the agent receives for entering
state s.

• Assumptions
– Markov property: T(s,a,s’) and R(s) only depend on current

state s, but not on any states visited earlier.
– Extension: Function R may be non-deterministic as well

Example

Reward:
• In terminal states reward of +1 / -1 and agent gets “stuck”
• Each other state has a reward of -0.04.

1 2 3

1

2

3

− 1

+ 1

4

START

0.8

0.1 0.1

• move into desired
direction with prob 80%

• move 90 degrees to left
with prob 10%

• move 90 degrees to right
with prob 10%

2

Policy
• Definition:

– A policy π describes which
action an agent selects in
each state

– a=π(s)
• Utility

– For now:
U([s0,…,sN]) = Σi R(si)

– Let P([s0,…,sN] | π, s0) be the probability of state sequence
[s0,…,sN] when following policy π from state s0

– Expected utility: Uπ(s) = Σ U([s0,…,sN]) P([s0,…,sN] | π, s0)
measure of quality of policy π

– Optimal policy π*: Policy with maximal Uπ(s) in each state s

1 2 3

1

2

3

− 1

+ 1

4

Optimal Policies for Other Rewards

Utility (revisited)
• Problem:

– What happens to utility value when
• either the state space has no terminal states
• or the policy never directs the agent to a terminal state

Utility becomes infinite
• Solution

– Discount factor 0 < γ < 1
closer rewards count more than awards far in the future

– U([s0,…,sN]) = Σi γi R(si)
finite utility even for infinite state sequences

How to Compute the Utility for a given
Policy?

• Definition: Uπ(s) = Σ [Σi γi R(si)] P([s0, s1,…] | π, s0=s)
• Recursive computation:

– Uπ(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ(s’)

1 2 3

1

2

3

− 1

+ 1

4

Here: γ=1.0, R(s)=-0.04
1 2 3

1

2

3

− 1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

Bellman Update (for fixed π)
Goal: Solve set of n=|S| equations (one for each state)

Uπ(s0) = R(s0) + γ Σs’ T(s0, π(s), s’) Uπ(s’)
…

Uπ(sn) = R(sn) + γ Σs’ T(sn, π(s), s’) Uπ(s’)

Algorithm [Policy Evaluation]:
– i=0; Uπ

0(s)=0 for all s
– repeat

• i = i +1
• for each state s in S do

– Uπ
i(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ

i-1(s’)
• endfor

– until difference between Uπ
i and Uπ

i-1 small enough
– return Uπ

i

How to Find the Optimal Policy π*?
Is policy π optimal? How can we tell?

– If π is not optimal, then there exists some state where
π(s) ≠ argmaxa Σs’ T(s, a, s’) Uπ(s’)

– How to find the optimal policy π*?

1 2 3

1

2

3

− 1

+ 1

4 1 2 3

1

2

3

− 1

+ 1

4

3

How to Find the Optimal Policy π*?
Algorithm [Policy Iteration]:

– repeat
• Uπ = PolicyEvaluation(π,S,T,R)
• for each state s in S do

– If [maxa Σs’ T(s, a, s’) Uπ(s’) > Σs’ T(s, π(s), s’) Uπ(s’)] then
» π(s) = argmaxa Σs’ T(s, a, s’) Uπ(s’)

• endfor

– until π does not change any more
– return π

Utility Policy
Equivalence:

– If we know the optimal utility U(s) of each state, we can
derive the optimal policy:

π*(s) = argmaxa Σs’ T(s, a, s’) U(s’)
– If we know the optimal policy π*, we can compute the

optimal utility of each state:
PolicyEvaluation algorithm

Bellman Equation:
U(s) = R(s) + γ maxaΣs’ T(s, a, s’) U(s’)

Necessary and sufficient condition for optimal U(s).

Value Iteration Algorithm
• Algorithm [Value Iteration]:

– i=0; U0(s)=0 for all s
– repeat

• i = i +1
• for each state s in S do

– Ui(s) = R(s) + γ maxa Σs’ T(s, a, s’) Ui-1(s’)
• endfor

– until difference between Ui and Ui-1 small enough
– return Ui

derive optimal policy via π*(s) = argmaxa Σs’ T(s, a, s’) U(s’)

Convergence of Value Iteration

• Value iteration is guaranteed to converge to optimal U
for 0 ≤ γ < 1

• Faster convergence for smaller γ

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)
(2,3)

(1,1)
(3,1)

(4,1)

(4,2)

Reinforcement Learning
Assumptions we made so far:

– Known state space S
– Known transition model T(s, a, s’)
– Known reward function R(s)

not realistic for many real agents

Reinforcement Learning:
– Learn optimal policy with a priori unknown environment
– Assume fully observable environment (i.e. agent can tell it’s

state)
– Agent needs to explore environment (i.e. experimentation)

Passive Reinforcement Learning
Task: Given a policy π, what is the utility function Uπ ?

– Similar to Policy Evaluation, but unknown T(s, a, s’) and
R(s)

Approach: Agent experiments in the environment
– Trials: execute policy from start state until in terminal state.

(1,1)-0.04 (1,2)-0.04
(1,3)-0.04 (1,2)-0.04
(1,3)-0.04 (2,3)-0.04
(3,3)-0.04 (4,3)1.0

(1,1)-0.04 (1,2)-0.04
(1,3)-0.04 (2,3)-0.04
(3,3)-0.04 (3,2)-0.04
(3,3)-0.04 (4,3)1.0

(1,1)-0.04 (2,1)-0.04
(3,1)-0.04 (3,2)-0.04
(4,2)-1.0 1 2 3

1

2

3

− 1

+ 1

4

4

Direct Utility Estimation
• Data: Trials of the form

– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (1,2)-0.04 (1,3)-0.04
(2,3)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (2,3)-0.04 (3,3)-0.04
(3,2)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (2,1)-0.04 (3,1)-0.04 (3,2)-0.04 (4,2)-1.0

• Idea:
– Average reward over all trials for each state independently

Supervised Learning Problem
• Why is this less efficient than necessary?

Ignores dependencies between states
Uπ(s) = R(s) + γ Σs’ T(s, π(s), s’) Uπ(s’)

• Idea:
– Run trials to learn model of environment (i.e. T and R)

• Memorize R(s) for all visited states
• Estimate fraction of times action a from state s leads to s’

– Use PolicyEvaluation Algorithm on estimated model
• Data: Trials of the form

– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (1,2)-0.04 (1,3)-0.04
(2,3)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (1,2)-0.04 (1,3)-0.04 (2,3)-0.04 (3,3)-0.04
(3,2)-0.04 (3,3)-0.04 (4,3)1.0

– (1,1)-0.04 (2,1)-0.04 (3,1)-0.04 (3,2)-0.04 (4,2)-1.0

Adaptive Dynamic Programming (ADP)

• Problem?
– Can be quite costly for large state spaces
– For example, Backgammon has 1050 states

Learn and store all transition probabilities and
rewards
PolicyEvaluation needs to solve linear program
with 1050 equations and variables.

Temporal Difference (TD) Learning
• Idea:

– Do not learn explicit model of environment!
– Use update rule that implicitly reflects transition

probabilities.
• Method:

– Init Uπ(s) with R(s) when first visited
– After each transition, update with

Uπ(s) = Uπ(s) + α [R(s) + γ Uπ(s’) - Uπ(s)]
– α is learning rate. α should decrease slowly over

time, so that estimates stabilize eventually.
• Properties:

– No need to store model
– Only one update for each action (not full

PolicyEvaluation)

Data:
– (1,1)-0.04

(1,2)-0.04
(1,3)-0.04
(1,2)-0.04
(1,3)-0.04
(2,3)-0.04
(3,3)-0.04
(4,3)1.0

– (1,1)-0.04
(1,2)-0.04
(1,3)-0.04
(2,3)-0.04
(3,3)-0.04
(3,2)-0.04
(3,3)-0.04
(4,3)1.0

Active Reinforcement Learning
• Task: In an a priori unknown environment, find the

optimal policy.
– unknown T(s, a, s’) and R(s)
– Agent must experiment with the environment.

• Naïve Approach: “Naïve Active PolicyIteration”
– Start with some random policy
– Follow policy to learn model of environment and use ADP

to estimate utilities.
– Update policy using π(s) argmaxa Σs’ T(s, a, s’) Uπ(s’)

• Problem:
– Can converge to sub-optimal policy!
– By following policy, agent might never learn T and R

everywhere.
Need for exploration!

Exploration vs. Exploitation
• Exploration:

– Take actions that explore the environment
– Hope: possibly find areas in the state space of higher reward
– Problem: possibly take suboptimal steps

• Exploitation:
– Follow current policy
– Guaranteed to get certain

expected reward
• Approach:

– Sometimes take random
steps

– Bonus reward for states
that have not been visited
often yet

1 2 3

1

2

3

− 1

+ 1

4

?

?

Q-Learning
• Problem: Agent needs model of environment to select

action via
argmaxa Σs’ T(s, a, s’) Uπ(s’)

• Solution: Learn action utility function Q(a,s), not state
utility function U(s). Define Q(a,s) as

U(s) = maxa Q(a,s)
Bellman equation with Q(a,s) instead of U(s)

Q(a,s) = R(s) + γ Σs’ T(s, a, s’) maxa’ Q(a’,s’)
TD-Update with Q(a,s) instead of U(s)

Q(a,s) Q(a,s) + α [R(s) + γ maxa’ Q(a’,s’) - Q(a,s)]
• Result: With Q-function, agent can select action without

model of environment
argmaxa Q(a,s)

5

Q-Learning Illustration

1 2 3

1

2

3

− 1

+ 1

4

Q(up,(1,1))
Q(right,(1,1))
Q(down,(1,1))
Q(left,(1,1))

Q(up,(1,2))
Q(right,(1,2))
Q(down,(1,2))
Q(left,(1,2))

Q(up,(2,1))
Q(right,(2,1))
Q(down,(2,1))
Q(left,(2,1))

Function Approximation
• Problem:

– Storing Q or U,T,R for each state in a table is too expensive,
if number of states is large

– Does not exploit “similarity” of states (i.e. agent has to learn
separate behavior for each state, even if states are similar)

• Solution:
– Approximate function using parametric representation
– For example:

• Ф(s) is feature vector describing the state
– “Material values” of board
– Is the queen threatened?
– …

