Foundations of Artificial Intelligence

Reinforcement Learning

CS472 – Fall 2007 Thorsten Joachims

Reinforcement Learning

· Problem

- Make sequence of decisions (policy) to get to goal / maximize utility
- · Search Problems so far
 - Known environment
 - · State space
 - · Consequences of actions
 - · Probability distribution of non-deterministic elements
 - Known utility / cost function
 - First compute the sequence of decisions, then execute (potentially recompute)

· Real-World Problems

- Environment is unknown a priori and needs to be explored
- Utility function unknown only examples are available for some states
 - · No feedback on individual actions
 - · Learn to act and to assign blame/credit to individual actions
- Need to quickly react to unforeseen events (have learned what to do)

Reinforcement Learning

Issues

- Agent knows the full environment a priori vs. unknown environment
- Agent can be passive (watch) or active (explore)
- Feedback (i.e. rewards) in terminal states only; or a bit of feedback in any state
- How to measure and estimate the utility of each action
- Environment fully observable, or partially observable
- Have model of environment and effects of action...or not
- → Reinforcement Learning will address these issues!

Markov Decision Process

• Representation of Environment:

- finite set of states S
- $\ \text{ set of actions } A \ \text{for each state } s \in S$

Process

- At each discrete time step, the agent
 - observes state $\boldsymbol{s}_t \in \boldsymbol{S}$ and then
 - chooses action a, ∈ A.
- After that, the environment
 - gives agent an immediate reward r,
 - changes state to s_{t+1} (can be probabilistic)

Markov Decision Process

• Model:

- Initial state: S₀
- Transition function: T(s,a,s')
 - \rightarrow T(s,a,s') is the probability of moving from state s to s' when executing action a.
- Reward function: R(s)
- → Real valued reward that the agent receives for entering state s

· Assumptions

- Markov property: T(s,a,s') and R(s) only depend on current state s, but not on any states visited earlier.
- Extension: Function R may be non-deterministic as well

Example 0.8 + 1 3 0.1 0.1 2 -1 move into desired direction with prob 80% START move 90 degrees to left with prob 10% move 90 degrees to right with prob 10% In terminal states reward of +1 / -1 and agent gets "stuck" Each other state has a reward of -0.04.

Policy +1 - A policy π describes which action an agent selects in ŧ ŧ -1 t $U([s_0,...,s_N]) = \Sigma_i R(s_i)$ – Let $P([s_0,...,s_N] \mid \pi,s_0)$ be the probability of state sequence $[s_0,...,s_N]$ when following policy π from state s_0

– Expected utility: $\mathbf{U}^{\pi}(\mathbf{s}) = \Sigma \ \mathbf{U}([s_0,...,s_N]) \ \mathbf{P}([s_0,...,s_N] \mid \pi,\, s_0)$ \rightarrow measure of quality of policy π – Optimal policy π^* : Policy with maximal $U^{\pi}(s)$ in each state s

Optimal Policies for Other Rewards ¥ 0.4278 < R(s) <+ 1 + 1

Utility (revisited)

· Problem:

· Definition:

· Utility

each state

- For now:

- What happens to utility value when
 - · either the state space has no terminal states
 - · or the policy never directs the agent to a terminal state
 - → Utility becomes infinite

Solution

- Discount factor $0 < \gamma < 1$
- → closer rewards count more than awards far in the future
- $U([s_0,...,s_N]) = \sum_i \gamma^i R(s_i)$
- → finite utility even for infinite state sequences

How to Compute the Utility for a given Policy? - Definition: $U^\pi(s) = \Sigma$ [$\Sigma_i \; \gamma^i \; R(s_i)$] $P([s_0, \, s_1, \dots] \mid \pi, \, s_0 = s)$ Recursive computation: $- U^{\pi}(s) = R(s) + \gamma \Sigma_{s'} T(s, \pi(s), s') U^{\pi}(s')$ +1 + 1 - 1 - 1 2 0.762 0.660 0.705 0.655 0.611 0.388 Here: γ =1.0, R(s)=-0.04

Bellman Update (for fixed π)

Goal: Solve set of n=|S| equations (one for each state)

 $U^{\pi}(s_0) = R(s_0) + \gamma \Sigma_{s'} T(s_0, \pi(s), s') U^{\pi}(s')$

 $U^{\pi}(s_n) = R(s_n) + \gamma \Sigma_{s'} T(s_n, \pi(s), s') U^{\pi}(s')$

Algorithm [Policy Evaluation]:

- i=0; $U_0^{\pi}(s)=0$ for all s
- repeat
- i = i + 1
- · for each state s in S do
 - $U_{i}^{\pi}(s) = R(s) + \gamma \Sigma_{s'} T(s, \pi(s), s') U_{i-1}^{\pi}(s')$
- · endfor
- until difference between $U^\pi_{\ i}$ and $U^\pi_{\ i-1}$ small enough
- return U_{i}^{π}

How to Find the Optimal Policy π^* ? Is policy π optimal? How can we tell? - If π is not optimal, then there exists some state where $\pi(s) \neq \operatorname{argmax}_{a} \Sigma_{s}, T(s, a, s') U^{\pi}(s')$ - How to find the optimal policy π^* ? +1 + 1 3 ŧ ŧ -1 - 1 2 t

How to Find the Optimal Policy π^* ?

Algorithm [Policy Iteration]:

- repeat
 - $U^{\pi} = PolicyEvaluation(\pi, S, T, R)$
 - · for each state s in S do
 - $$\begin{split} & \text{ If } [\text{ max}_a \; \Sigma_s. \; T(s,a,s') \; U^\pi(s') \; > \Sigma_s. \; T(s,\pi(s),s') \; U^\pi(s') \;] \; \text{then} \\ & \gg \pi(s) = \text{argmax}_a \; \Sigma_s. \; T(s,a,s') \; U^\pi(s') \end{split}$$
 - endfor
- until π does not change any more
- return π

Utility ⇔ Policy

Equivalence:

If we know the optimal utility U(s) of each state, we can derive the optimal policy:

$$\pi^*(s) = \operatorname{argmax}_a \Sigma_{s'} T(s, a, s') U(s')$$

– If we know the optimal policy π^* , we can compute the optimal utility of each state:

PolicyEvaluation algorithm

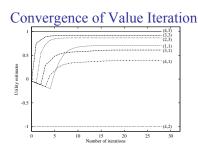
Bellman Equation:

$$U(s) = R(s) + \gamma \max_{a} \Sigma_{s'} T(s, a, s') U(s')$$

→ Necessary and sufficient condition for optimal U(s).

Value Iteration Algorithm

- Algorithm [Value Iteration]:
 - i=0; U₀(s)=0 for all s
 - repeat
 - i = i + 1
 - for each state s in S do
 - $U_i(s) = R(s) + \gamma \max_a \Sigma_{s'} T(s, a, s') U_{i-1}(s')$
 - endfor
 - $-\,$ until difference between $\boldsymbol{U_{i}}$ and $\boldsymbol{U_{i\text{--}1}}$ small enough
 - return U_i
- \rightarrow derive optimal policy via $\pi^*(s) = \operatorname{argmax}_a \Sigma_s$. T(s, a, s') U(s')



- Value iteration is guaranteed to converge to optimal U for $0 \le \gamma < 1$
- Faster convergence for smaller γ

Reinforcement Learning

Assumptions we made so far:

- Known state space S
- Known transition model T(s, a, s')
- Known reward function R(s)
- →not realistic for many real agents

Reinforcement Learning:

- Learn optimal policy with a priori unknown environment
- Assume fully observable environment (i.e. agent can tell it's state)
- Agent needs to explore environment (i.e. experimentation)

Passive Reinforcement Learning

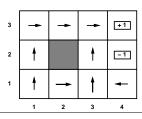
Task: Given a policy π , what is the utility function U^{π} ?

– Similar to Policy Evaluation, but unknown $T(s,\,a,\,s^\prime)$ and R(s)

Approach: Agent experiments in the environment

Trials: execute policy from start state until in terminal state.

 $\begin{array}{c} (1,1)_{.004} \Rightarrow (1,2)_{.004} \\ \Rightarrow (1,3)_{.004} \Rightarrow (1,2)_{.004} \\ \Rightarrow (1,3)_{.004} \Rightarrow (2,3)_{.004} \\ \Rightarrow (1,3)_{.004} \Rightarrow (2,3)_{.004} \\ \Rightarrow (3,3)_{.004} \Rightarrow (2,3)_{.004} \\ \Rightarrow (3,3)_{.004} \Rightarrow (2,3)_{.004} \\ \Rightarrow (3,3)_{.004} \Rightarrow (4,3)_{.0} \\ \Rightarrow (3,3)_{.004} \Rightarrow (4,3)_{.0} \\ \Rightarrow (3,3)_{.004} \Rightarrow (3,2)_{.004} \\ \Rightarrow (3,1)_{.004} \Rightarrow (3,2)_{.004} \\ \Rightarrow (3,1)_{.004} \Rightarrow (3,2)_{.004} \\ \Rightarrow (4,2)_{.10} \end{array}$



Direct Utility Estimation

- · Data: Trials of the form
 - $\begin{array}{c} \ (1,1)_{-0.04} \Rightarrow (1,2)_{-0.04} \Rightarrow (1,3)_{-0.04} \Rightarrow (1,2)_{-0.04} \Rightarrow (1,3)_{-0.04} \Rightarrow \\ (2,3)_{-0.04} \Rightarrow (3,3)_{-0.04} \Rightarrow (4,3)_{1.0} \end{array}$
 - $\begin{array}{l} -\ (1,1)_{.0.04} \rightarrow (1,2)_{.0.04} \rightarrow (1,3)_{.0.04} \rightarrow (2,3)_{.0.04} \rightarrow (3,3)_{.0.04} \rightarrow \\ (3,2)_{.0.04} \rightarrow (3,3)_{.0.04} \rightarrow (4,3)_{1.0} \end{array}$
 - $-\ (1,1)_{-0.04} \rightarrow (2,1)_{-0.04} \rightarrow (3,1)_{-0.04} \rightarrow (3,2)_{-0.04} \rightarrow (4,2)_{-1.0}$
- Idea:
 - Average reward over all trials for each state independently
 - → Supervised Learning Problem
- · Why is this less efficient than necessary?
 - → Ignores dependencies between states $U^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') \ U^{\pi}(s')$

Adaptive Dynamic Programming (ADP)

- · Idea:
 - Run trials to learn model of environment (i.e. T and R)
 - · Memorize R(s) for all visited states
 - · Estimate fraction of times action a from state s leads to s'
 - Use PolicyEvaluation Algorithm on estimated model
- Problem
 - Can be quite costly for large state spaces
 - For example, Backgammon has 10⁵⁰ states
 - → Learn and store all transition probabilities and rewards
 - → PolicyEvaluation needs to solve linear program with 10⁵⁰ equations and variables.

Temporal Difference (TD) Learning

Idea:

- Do not learn explicit model of environment!
- Use update rule that implicitly reflects transition probabilities.

· Method:

- Init $U^{\pi}(s)$ with R(s) when first visited
- After each transition, update with
 - $U^{\pi}(s) = U^{\pi}(s) + \alpha [R(s) + \gamma U^{\pi}(s') U^{\pi}(s)]$
- α is learning rate. α should decrease slowly over time, so that estimates stabilize eventually.

· Properties:

- No need to store model
- Only one update for each action (not full PolicyEvaluation)

Data: $-(1,1)_{-0.04} \Rightarrow (1,2)_{-0.04} \Rightarrow (1,2)_{-0.04} \Rightarrow (1,3)_{-0.04} \Rightarrow (1,3)_{-0.04} \Rightarrow (2,3)_{-0.04} \Rightarrow (3,3)_{-0.04} \Rightarrow (4,3)_{1.0} \\ -(1,1)_{-0.04} \Rightarrow (1,2)_{-0.04} \Rightarrow (1,3)_{-0.04} \Rightarrow (2,3)_{-0.04} \Rightarrow (2,3)_{-0.04} \Rightarrow (2,3)_{-0.04} \Rightarrow (2,3)_{-0.04} \Rightarrow (2,3)_{-0.04} \Rightarrow (3,3)_{-0.04} \Rightarrow (3,3)$

 $(3,3)_{-0.04} \rightarrow (3,2)_{-0.04} \rightarrow$

(3,3)_{-0.04} →

 $(4,3)_{1.0}$

Active Reinforcement Learning

- Task: In an a priori unknown environment, find the optimal policy.
 - unknown T(s, a, s') and R(s)
 - Agent must experiment with the environment.
- · Naïve Approach: "Naïve Active PolicyIteration"
 - Start with some random policy
 - Follow policy to learn model of environment and use ADP to estimate utilities.
 - Update policy using $\pi(s)$ ← argmax_a $\Sigma_{s'}$ T(s, a, s') U $\pi(s')$

· Problem:

- Can converge to sub-optimal policy!
- By following policy, agent might never learn T and R everywhere.
 - → Need for exploration!

Exploration vs. Exploitation

• Exploration:

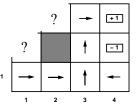
- Take actions that explore the environment
- Hope: possibly find areas in the state space of higher reward
- Problem: possibly take suboptimal steps

• Exploitation:

- Follow current policy
- Guaranteed to get certain expected reward

· Approach:

- Sometimes take random steps
- Bonus reward for states that have not been visited often yet



Q-Learning

• Problem: Agent needs model of environment to select action via

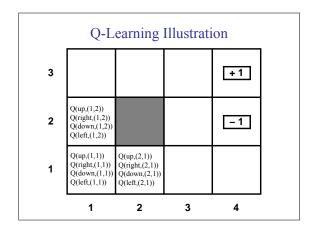
 $\operatorname{argmax}_{a} \Sigma_{s'} T(s, a, s') U^{\pi}(s')$

• Solution: Learn action utility function Q(a,s), not state utility function U(s). Define Q(a,s) as

 $U(s) = \max_{a} Q(a,s)$

- →Bellman equation with Q(a,s) instead of U(s)
 - $Q(a,s) = R(s) + \gamma \Sigma_{s'} T(s, a, s') \max_{a'} Q(a',s')$
- \rightarrow TD-Update with Q(a,s) instead of U(s)
 - $Q(a,s) \leftarrow Q(a,s) + \alpha [R(s) + \gamma \max_{a'} Q(a',s') Q(a,s)]$
- Result: With Q-function, agent can select action without model of environment

argmax_a Q(a,s)



Function Approximation

· Problem:

- Storing Q or U,T,R for each state in a table is too expensive, if number of states is large
- Does not exploit "similarity" of states (i.e. agent has to learn separate behavior for each state, even if states are similar)

· Solution:

- Approximate function using parametric representation
- For example: $U(s) = \vec{w} \cdot \Phi(s)$
 - $\Phi(s)$ is feature vector describing the state
 - "Material values" of board
 - Is the queen threatened?
 - ...