Foundations of Artificial Intelligence

Reinforcement Learning

CS472 - Fall 2007
Thorsten Joachims

Reinforcement Learning

Problem
— Make sequence of decisions (policy) to get to goal / maximize utility
Search Problems so far
— Known environment
« State space
« Consequences of actions
« Probability distribution of non-deterministic elements
— Known utility / cost function
— First compute the sequence of decisions, then execute (potentially re-
compute)
Real-World Problems
— Environment is unknown a priori and needs to be explored
— Utility function unknown — only examples are available for some states
* No feedback on individual actions
+ Learn to act and to assign blame/credit to individual actions
— Need to quickly react to unforeseen events (have learned what to do)

Reinforcement Learning

e Issues

— Agent knows the full environment a priori vs. unknown
environment

— Agent can be passive (watch) or active (explore)

Feedback (i.e. rewards) in terminal states only; or a bit of
feedback in any state

— How to measure and estimate the utility of each action
— Environment fully observable, or partially observable

Have model of environment and effects of action...or not

-> Reinforcement Learning will address these issues!

Markov Decision Process

* Representation of Environment:
— finite set of states S
— set of actions A for each state s € S
* Process
— At each discrete time step, the agent
* observes state s, € S and then
« chooses action a, € A.
— After that, the environment
« gives agent an immediate reward ,
« changes state to s,, (can be probabilistic)

Markov Decision Process

* Model:
— Initial state: S
— Transition function: T(s,a,s”)
- T(s,a,s’) is the probability of moving from state s to s’
when executing action a.

— Reward function: R(s)
- Real valued reward that the agent receives for entering
state s.
* Assumptions
— Markov property: T(s,a,s’) and R(s) only depend on current
state s, but not on any states visited earlier.
— Extension: Function R may be non-deterministic as well

Example
0.8
3
3 [+1]
0.1 0.1
2
« move into desired
direction with prob 80%
1 START « move 90 degrees to left

with prob 10%
« move 90 degrees to right
1 2 3 4 with prob 10%

Reward:

+ In terminal states reward of +1 /-1 and agent gets “stuck”
« Each other state has a reward of -0.04.

Policy

* Definition:
— A policy © describes which

— a=n(s) . f
« Utility

—

action an agent selects in . f f .

each state 1]
-

— For now: 1 2 3 4
U([s,---»sn]) = Z; R(sy)

— Let P([s,...,sx] | 7, s) be the probability of state sequence
[Sgs---»Sx] When following policy m from state s,

— Expected utility: U%(s) = Z U([s,,...,Sx]) P([Sg---»Sn] | T, 50)
- measure of quality of policy

— Optimal policy n*: Policy with maximal U™(s) in each state s

Optimal Policies for Other Rewards

- | = | = | = |||
\ =|caf | 4 } =D

Ris)<-1.6284 04278 < R(s) < -0.0850
- = |4 |4 |=|=
) = || |4} | = |co
| Al hdhadndki

0.0221 <R(s)<0 Ri(s)=0

- | -

Utility (revisited)

* Problem:
— What happens to utility value when
« either the state space has no terminal states
« or the policy never directs the agent to a terminal state
- Utility becomes infinite
* Solution
— Discount factor 0 <y <1
- closer rewards count more than awards far in the future
= U([sgs---»x]) = Z; ¥ R(sy)
-> finite utility even for infinite state sequences

How to Compute the Utility for a given
Policy?
* Definition: U*(s) = X [X, v' R(s;) | P([Sy, Sy.-.] | 7, 54=5)
* Recursive computation:
— U%s) =R(s) +y I, T(s, n(s), s”) UX(s’)

— 3 | o812 | oses | 0018

—_
-

- - 1 0.705 0.655 0.611 0.388

1 2 3 4 1 2 3 4
Here: y=1.0, R(s)=-0.04

Bellman Update (for fixed)

Goal: Solve set of n=|S| equations (one for each state)
Ur(s9) = R(so) + v X T(sg, 1(s), 87) UK(s”)

Us(s,) = R(s,) + 7 Z, TGs,0 (s), 87) US(S)

Algorithm [Policy Evaluation]:

— i=0; U7 (s)=0 for all s
— repeat

ci=i+l

« for each state s in S do

— Um(s) =R(s) + vy Z. T(s, m(s), s*) U™\ (s”)

« endfor
— until difference between U™, and U™, | small enough
— return U™

How to Find the Optimal Policy n*?

Is policy optimal? How can we tell?
— If m is not optimal, then there exists some state where
n(s) # argmax, X, T(s, a, s’) U(s’)
— How to find the optimal policy n*?

— (|| —

N el DE

How to Find the Optimal Policy ©*?

Algorithm [Policy Iteration]:
— repeat
« U= PolicyEvaluation(r,S,T,R)
« for each state s in S do
— If [max, £, T(s, a, s°) U%(s’) > X, T(s, 1(s), s°) U(s’) | then
» m(s) = argmax, I T(s, a, s’) U%(s’)
* endfor
— until © does not change any more
— return

Utility <> Policy

Equivalence:
— If we know the optimal utility U(s) of each state, we can
derive the optimal policy:
n'(s) = argmax, X, T(s, a, s’) U(s’)
— If we know the optimal policy ©*, we can compute the
optimal utility of each state:
PolicyEvaluation algorithm
Bellman Equation:
U(s) = R(s) +y max, X T(s, a,s”) U(s’)
=> Necessary and sufficient condition for optimal U(s).

Value Iteration Algorithm

+ Algorithm [Value Iteration]:

— i=0; Uy(s)=0 for all s
— repeat

e i=i+l

« for each state s in S do

— Uj(s) =R(s) + y max, X T(s, a,s”) Uy ,(s”)

« endfor
— until difference between U; and U, ; small enough
— return U;

-> derive optimal policy via 7°(s) = argmax, X T(s, a, s”) U(s”)

Convergence of Value Iteration

1

Uiility estimates

05

E .2)
0 5 10 2% 30

15 20
Number of iterations

* Value iteration is guaranteed to converge to optimal U
for0<y<1
» Faster convergence for smaller y

Reinforcement Learning

Assumptions we made so far:
— Known state space S
— Known transition model T(s, a, s’)
— Known reward function R(s)
> not realistic for many real agents

Reinforcement Learning:
— Learn optimal policy with a priori unknown environment
— Assume fully observable environment (i.e. agent can tell it’s
state)
— Agent needs to explore environment (i.e. experimentation)

Passive Reinforcement Learning

Task: Given a policy &, what is the utility function U™ ?
— Similar to Policy Evaluation, but unknown T(s, a, s’) and
R(s)
Approach: Agent experiments in the environment
— Trials: execute policy from start state until in terminal state.

(11505 2 (12).004
2 (1.3)004 2 (1.2) 04
2> (1,3)004 > (2,3)004 3 -
> (330w > (@3

—-
(Iﬂl)-U.D-" > (1,2)_004

—_—
>0 e 2|} . t
> 3300 > B2

—

> (300 > @3 1

(1 i) 1)70 04 9 (271)70.04
2 (G100 > G204

2> (42)., 1 2 3 4

Direct Utility Estimation

Data: Trials of the form
= (LD g4 > (1.2) 04 2 (1.3) 004 > (1.2)0.04 > (1.3).004 >
(2.3).000 2 33004 > 4:3)1

- (1 ’1)—0.04 > (1 ’2)—0.04 > (173)—0.04 > (2’3)—0.04 > (3’3)—0.04 >
(3’2)—0.04 4 (3’3)—0.04 > (4’3)1.0

= (1LDgos > 21004 > BiDgps @ B-2) 004 > (4:2).10
Idea:
— Average reward over all trials for each state independently
=>Supervised Learning Problem
‘Why is this less efficient than necessary?

=> Ignores dependencies between states
U(s) = R(s) + 7 I T(s, m(s), s7) UK(s")

Adaptive Dynamic Programming (ADP)

* Idea:
— Run trials to learn model of environment (i.e. T and R)
* Memorize R(s) for all visited states
« Estimate fraction of times action a from state s leads to s’

— Use PolicyEvaluation Algorithm on estimated model

* Problem?
— Can be quite costly for large state spaces
— For example, Backgammon has 10 states
=>» Learn and store all transition probabilities and
rewards
=> PolicyEvaluation needs to solve linear program
with 10%° equations and variables.

Temporal Difference (TD) Learning

Active Reinforcement Learning

* Task: In an a priori unknown environment, find the
optimal policy.
— unknown T(s, a, s’) and R(s)
— Agent must experiment with the environment.
* Naive Approach: “Naive Active Policylteration”
— Start with some random policy

— Foltow-petiey to learn model of environment and use ADP
to estimate utilities.

— Update policy using n(s) € argmax, X T(s, a, s) U*(s")
* Problem:
— Can converge to sub-optimal policy!
— By following policy, agent might never learn T and R
everywhere.
=> Need for exploration!

I Data:
dea: y . RTINS
— Do not learn explicit model of environment! (1.2) 04 >
— Use update rule that implicitly reflects transition (l,})_u:04 >
probabilities. (1,2) 904 >
+ Method: (1,3)5.04 >
— Tnit U(s) with R(s) when first visited gg;w f)
— After each transition, update with (4’3)’1";04
U = UX9) + 0 [R(5) +7 US) - U] | ()"
— ais learning rate. a should decrease slowly over (1’2)'0'04 >
time, so that estimates stabilize eventually. ’3 00 ES
(1,3)0.04
* Properties: (2.3)904 2
— No need to store model (3.3)904
— Only one update for each action (not full (:2).004 ?)
PolicyEvaluation) (-3).004
4310
Exploration vs. Exploitation
« Exploration:

— Take actions that explore the environment
— Hope: possibly find areas in the state space of higher reward
— Problem: possibly take suboptimal steps
Exploitation:
— Follow current policy
— Guaranteed to get certain 9 —
expected reward :
Approach:
— Sometimes take random
steps
— Bonus reward for states . 1
that have not been visited
often yet

Q-Learning

* Problem: Agent needs model of environment to select
action via
argmax, X, T(s, a,) UX(s’)
* Solution: Learn action utility function Q(a,s), not state
utility function U(s). Define Q(a,s) as
U(s) = max, Q(a,s)
=>Bellman equation with Q(a,s) instead of U(s)
Q(a,s) =R(s) + v =, T(s, a, s’) max,. Q(a’,s”)
> TD-Update with Q(a,s) instead of U(s)
Q(a,s) € Q(a,s) + o [R(s) +y max, Q(@’,s") - Q(a,s)]
* Result: With Q-function, agent can select action without
model of environment

argmax, Q(a,s)

Q-Learning Illustration

Q(up,(1,2))
Q(right,(1,2))
Q(down,(1,2))
Q(left,(1,2))

Qup,(L,1)) | Q(up.(2,1))
Q(right,(1,1)) | Q(right,(2,1))
Q(down,(1,1)) | Q(down,(2,1))
Q(left,(1,1)) | Q(left,(2,1))

1 2

Function Approximation

Problem:
— Storing Q or U,T,R for each state in a table is too expensive,
if number of states is large
— Does not exploit “similarity” of states (i.e. agent has to learn
separate behavior for each state, even if states are similar)
Solution:
— Approximate function using parametric representation
— For example: [/(s) = ' - ®(s)
« @(s) is feature vector describing the state
— “Material values” of board
— Is the queen threatened?

