
1

Foundations of Artificial Intelligence

Local Search

CS472 – Fall 2007
Filip Radlinski

Scaling Up
• So far, we have considered methods that

systematically explore the full search space, possibly
using principled pruning (A* etc.).

• The current best such algorithms (RBFS / SMA*) can
handle search spaces of up to 10100 states
→ ~ 500 binary valued variables.

• But search spaces for some real-world problems might
be much bigger - e.g. 1030,000 states.

• Here, a completely different kind of search is needed.
→ Local Search Methods

Example

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Optimization Problems

• We're interested in the Goal State - not in how to get
there.

• Optimization Problem:
- State: vector of variables
- Objective Function: f: state →
- Goal: find state that maximizes or minimizes the

objective function

• Examples: VLSI layout, job scheduling, map coloring,
N-Queens.

ℜ

Example Local Search Methods

• Applicable to optimization problems.

• Basic idea:
- use a single current state
- don't save paths followed
- generally move only to successors/neighbors of that

state

• Generally require a complete state description.

2

Hill-Climbing Search
function HILL-CLIMBING () returns a solution state
 inputs: , a problem
 static: , a node

 MAKE-NODE(INITIAL-STATE[])
loop do
 a highest-valued succe

problem
problem

current

current problem

next

←

← ssor of
 if VALUE[next] < VALUE[current] then return

end

current
current

current next←
Current State

Evaluation

Hill Climbing Pathologies
Objective function

Shoulder

Global Maximum

Local Maximum

“flat” local maximum

State Space

Value of current solution

Local Maximum Example

Improvements to Basic Local Search
Issue: How to move more quickly to successively higher
plateaus and avoid getting “stuck” local maxima.

Idea: Introduce downhill moves (“noise”) to escape from long
plateaus (or true local maxima).

Strategies:
• Random-restart hill-climbing

=> Multiple runs from randomly generated initial states
• Tabu search
• Simulated Annealing
• Genetic Algorithms

Variations on Hill-Climbing
Random restarts: Simply restart at a new random state after a

pre-defined number of steps.

Local Beam Search: Run the random starting points in
parallel, always keeping the k most promising states

current ← k initial states
for t ← 1 to infinity do

new ← expand every state in current
if f(best-in-new) < f(best-in-current) then

return best-in-current
current ← best k states in new

3

Ridges Simulated Annealing

Idea:
Use conventional hill-climbing techniques, but
occasionally take a step in a direction other than that in which
the rate of change is maximal.

As time passes, the probability that a down-hill step is taken is
gradually reduced and the size of any down-hill step taken is
decreased.

Kirkpatrick et al. 1982; Metropolis et al.1953.

Simulated Annealing Algorithm

current ← initial state
for t ← 1 to infinity do

T ← schedule[t]
if T = 0 then return current
next ← randomly selected successor of current
∆E ← f(next) – f(current)
if ∆E > 0 then current ← next
else current ← next only with probability e∆E/T

Genetic Algorithms
• Approach mimics evolution.

• Usually presented using a rich (and different) vocabulary:
fitness, populations, individuals, genes, crossover,
mutations, etc.

• Still, can be viewed quite directly in terms of standard
local search.

Genetic Algorithms

Inspired by biological processes that produce genetic change in
populations of individuals.

Genetic algorithms (GAs) are local search procedures that
usually the following basic elements:

• A Darwinian notion of fitness: the most fit individuals
have the best chance of survival and reproduction.

• “Crossover” operators:
- Parents are selected.
- Parents pass their genetic material to children.

• Mutation: individuals are subject to random changes in
their genetic material.

Features of Evolution

• High degree of parallelism (many individuals in a population)

• New individuals (“next state / neighboring states”):
Derived by combining “parents” (“crossover operation”)
Random changes also happen (“mutations”)

• Selection of next generation:
Based on survival of the fittest: the most fit parents tend to be
used to generate new individuals.

4

General Idea
• Maintain a population of individuals (states / strings /

candidate solutions)

• Each individual is evaluated using a fitness function, i.e. an
objective function. The fitness scores force individuals to
compete for the privilege of survival and reproduction.

• Generate a sequence of generations:
- From the current generation, select pairs of individuals
(based on fitness) to generate new individuals, using crossover.

• Introduce some noise through random mutations.

• Hope that average and maximum fitness (i.e. value to be optimized)
increases over time.

GA: High-level Algorithm

24748552

24415124

32543213

32752411

24752411

32752411

24415124

32752411

32752124

24415411

24748552 24752411

32748552

23 29%

20 26%

11 14%

24 31%

(b)

Fitness Function

(c)

Selection

(d)

Cross-Over

(e)

Mutation
(a)

Initial Population

32748152

32252124

24415417

Genetic algorithms as search

• Genetic algorithms are local heuristic search algorithms.

• Especially good for problems that have large and poorly
understood search spaces.

• Genetic algorithms use a randomized parallel beam search
to explore the state space.

• You must be able to define a good fitness function, and of
course, a good state representation.

GA (Fitness, Fitness_threshold,p,r,m)

• P← randomly generate p individuals
• For each i in P, compute Fitness(i)
• While [maxi Fitness(i)] < Fitness_threshold

1. Probabilistically select (1-r)p members of P to add to PS.
2. Probabilistically choose (r·p)/2 pairs of individuals from P.

For each pair, apply crossover and add the offspring to PS

3. Mutate m·p random members of PS

4. P ← PS

5. For each i in P, compute Fitness(i)
• Return the individual in P with the highest fitness.

1 2,i i

Selecting Most Fit Individuals

1

()Pr()
()

p

jj

Fitness ii
Fittness i

=

=
Σ

Individuals are chosen probabilistically for survival and
crossover based on fitness proportionate selection:

Other selection methods include:
• Tournament Selection: 2 individuals selected at random.

With probabiltiy p, the more fit of the two is selected.
With probability (1-p), the less fit is selected.

• Rank Selection: The individuals are sorted by fitness and
the probability of selecting an individual is proportional to
its rank in the list.

Binary string representations
• Individuals are usually represented as a string over a finite
alphabet, usually bit strings.

• Individuals represented can be arbitrarily complex.

• E.g. each component of the state description is allocated a
specific portion of the string, which encodes the values that
are acceptable.

• Bit string representation allows crossover operation to
change multiple values in the state description. Crossover
and mutation can also produce previously unseen values.

5

8-queens State Representation

option 1: 86427531
option 2: 111 101 011 001 110 100 010 000

Mutation: randomly toggle one bit

Individual A: 1 0 0 1 0 1 1 1 0 1

Individual A’: 1 0 0 0 0 1 1 1 0 1

Mutation

Mutation

• The mutation operator introduces random variations,
allowing solutions to jump to different parts of the search
space.

• What happens if the mutation rate is too low?

• What happens if the mutation rate is too high?

• A common strategy is to use a high mutation rate when
search begins but to decrease the mutation rate as the
search progresses.

Crossover Example

+ =

World championship chocolate chip cookie recipe.

Another Example

Generation 1
281.51.537
2821.586
1101.52.54.15
2162.52.52.24
181123
214134.52
1162141

FitnessVanillaChipsSaltSugarFlour

Crossover Operators
Single-point crossover:

Parent A: 1 0 0 1 0 1 1 1 0 1

Parent B: 0 1 0 1 1 1 0 1 1 0

Child AB: 1 0 0 1 0 1 0 1 1 0

Child BA: 0 1 0 1 1 1 1 1 0 1

6

Uniform crossover:

Parent A: 1 0 0 1 0 1 1 1 0 1

Parent B: 0 1 0 1 1 1 0 1 1 0

Child AB: 1 1 0 1 1 1 1 1 0 1

Child BA: 0 0 0 1 0 1 0 1 1 0

Uniform Crossover Remarks on GA’s

• In practice, several 100 to 1000's of strings.

• Crowding can occur when an individual that is much more
fit than others reproduces like crazy, which reduces
diversity in the population.

• In general, GA's are highly sensitive to the representation.

• Value of crossover difficult to determine (so far)
(→local search).

In Genetic Programming, programs are evolved instead of bit
strings. Programs are represented by trees. For example:

sin

Genetic Programming

2sin()x x y+ +

x

x

y^

+

+

2

Local Search - Summary
Surprisingly efficient search method.
• Wide range of applications.

– any type of optimization / search task
• Handles search spaces that are too large

– (e.g., 101000) for systematic search
• Often best available algorithm when lack of global

information.
• Formal properties remain largely elusive.
• Research area will most likely continue to thrive.

