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Foundations of Artificial Intelligence

Informed Search

CS472 – Fall 2007
Thorsten Joachims

Informed Methods: Heuristic Search
Idea: Informed search by using problem-specific knowledge.

Best-First Search: Nodes are selected for expansion based 
on an evaluation function, f(n).  Traditionally, f is a cost 
measure.

Heuristic: Problem specific knowledge that (tries to) lead the 
search algorithm faster towards a goal state. Often 
implemented via heuristic function h(n).

→ Heuristic search is an attempt to search the most promising
paths first. Uses heuristics, or rules of thumb, to find the best
node to expand next. 

Generic Best-First Search

1. Set L to be the initial node(s) representing the initial 
state(s).

2. If L is empty, fail. Let n be the node on L that is 
``most promising'‘ according to f. Remove n from L.

3. If n is a goal node, stop and return it (and the path 
from the initial node to n).

4. Otherwise, add successors(n) to L. Return to step 2.

Greedy Best-First Search
Heuristic function h(n): estimated cost from node n to 

nearest goal node.

Greedy Search: Let f(n) = h(n).

Example: 8-puzzle
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Example: Suboptimal Best First-Search

There exist strategies that enable optimal paths to be found without 
examining all possible paths.

A* Search

Idea: Use total estimated solution cost:

g(n): Cost of reaching node n from initial node

h(n): Estimated cost from node n to nearest goal

A* evaluation function: f(n) = g(n) + h(n)
→ f(n) is estimated cost of cheapest solution through n.
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Comparison of Search Costs on 8-Puzzle

h1: number of misplaced     
tiles

h2: Manhattan distance
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Admissibility
h*(n) Actual cost to reach a goal from n.

Definition: A heuristic function h is optimistic or admissible if 
h(n) ≤ h*(n) for all nodes n. (h never overestimates the cost of
reaching the goal.)

Theorem: If h is admissible, then the A* algorithm will never 
return a suboptimal goal node. 

Example
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1. hC = number of misplaced tiles

2. hM = Manhattan distance

Which one should we use?

hC ≤ hM ≤ h*

8-Puzzle Comparison of Search Costs on 8-Puzzle
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h1: number of misplaced tiles
h2: Manhattan distance
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Constructing Admissible Heuristics

• Use an admissible heuristic derived from a relaxed 
version of the problem.

• Use information from pattern databases that store exact 
solutions to subproblems of the problem.

• Use inductive learning methods.

Example: A*
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Assume: h admissible; f non-decreasing along any path.

Proof [Optimality of A*]:
Let G be an optimal goal state, with path cost f*.
Let G2 be a suboptimal goal state, with path cost g(G2) > f*.
Let n is a node on an optimal path to G.

Assume that G2 is expanded before n:
• Because h is admissible, we must have

f* ≥ f(n).
• If n is not expanded before expanding G2, we must have 

f(n)  ≥ f(G2).
• Gives us f* ≥ f(G2) = g(G2). 
• Contradiction to G2 suboptimal!

Proof of the optimality of A* Proving the optimality of A*

Lemma: If h is admissible, then f=g+h can be made non decreasing.

1. g is non-decreasing since cost positive.

2. But h can be increasing, while still admissible. 
Example: Node p, with f=3+4=7; child n, with f=4+2=6.

3. But because any path through n is also a path through p, we 
can see that the value 6 is meaningless, because we already 
know the true cost is at least 7 (because h is admissible).

4. So, make f = max (f(p),g(n)+h(n))

A*
Optimal: yes

Complete: Unless there are infinitely many nodes with f(n)<f*. 
Assume locally finite:
(1) finite branching, (2) every operator costs at least 

Complexity (time and space): Still exponential because of 
breadth-first nature. Unless |h(n) – h*(n)| ≤ O(log(h*(n))),
with h* true cost of getting to goal.

A* is optimally efficient: given the information in h, no 
other optimal search method can expand fewer nodes.

0δ >

IDA*

Memory is a problem for the A* algorithms.

IDA* is like iterative deepening, but uses an f-cost limit 
rather than a depth limit.

At each iteration, the cutoff value is the smallest f-cost of any 
node that exceeded the cutoff on the previous iteration.

Each iteration uses conventional depth-first search.
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Similar to a DFS, but keeps track of the f-value of the best 
alternative path available from any ancestor of the current 
node.

If current node exceeds this limit, recursion unwinds back to the 
alternative path, replacing the f-value of each node along the 
path with the best f-value of its children.

(RBFS remembers the f-value of the best leaf in the forgotten 
subtree.)

Recursive best-first search (RBFS) SMA*
Simplified Memory-Bounded A* Search:
• While memory available, proceeds just like A*, expanding 

the best leaf.
• If memory is full, drops the worst leaf node - the one the 

highest f-cost; and stores this value in its parent node.

(Won't know which way to go from this node, but we will 
have some idea of how worthwhile it is to explore the 
node.)


