
1

Foundations of Artificial Intelligence

Informed Search

CS472 – Fall 2007
Thorsten Joachims

Informed Methods: Heuristic Search
Idea: Informed search by using problem-specific knowledge.

Best-First Search: Nodes are selected for expansion based
on an evaluation function, f(n). Traditionally, f is a cost
measure.

Heuristic: Problem specific knowledge that (tries to) lead the
search algorithm faster towards a goal state. Often
implemented via heuristic function h(n).

→ Heuristic search is an attempt to search the most promising
paths first. Uses heuristics, or rules of thumb, to find the best
node to expand next.

Generic Best-First Search

1. Set L to be the initial node(s) representing the initial
state(s).

2. If L is empty, fail. Let n be the node on L that is
``most promising'‘ according to f. Remove n from L.

3. If n is a goal node, stop and return it (and the path
from the initial node to n).

4. Otherwise, add successors(n) to L. Return to step 2.

Greedy Best-First Search
Heuristic function h(n): estimated cost from node n to

nearest goal node.

Greedy Search: Let f(n) = h(n).

Example: 8-puzzle

4

45

6 1

7 3 2

8

21

8

3

7 6 5

Start State Goal State

Example: Suboptimal Best First-Search

There exist strategies that enable optimal paths to be found without
examining all possible paths.

A* Search

Idea: Use total estimated solution cost:

g(n): Cost of reaching node n from initial node

h(n): Estimated cost from node n to nearest goal

A* evaluation function: f(n) = g(n) + h(n)
→ f(n) is estimated cost of cheapest solution through n.

2

Comparison of Search Costs on 8-Puzzle

h1: number of misplaced
tiles

h2: Manhattan distance

24

22

20

18

16

14

12

10

8

6

4

2

d

164139135-

121918094-

6767276-

3633056-

2111301-

1135393473941

73227364404

399347127

25396384

1820680

1213112

6610

A*(h2)A*(h1)IDS

Search Cost

Example

2

goal3

Admissibility
h*(n) Actual cost to reach a goal from n.

Definition: A heuristic function h is optimistic or admissible if
h(n) ≤ h*(n) for all nodes n. (h never overestimates the cost of
reaching the goal.)

Theorem: If h is admissible, then the A* algorithm will never
return a suboptimal goal node.

Example

2

1

1

1

goal?

goal

goal

1

2

1. hC = number of misplaced tiles

2. hM = Manhattan distance

Which one should we use?

hC ≤ hM ≤ h*

8-Puzzle Comparison of Search Costs on 8-Puzzle

-

-

-

-

-

2.83

2.78

2.79

2.80

2.73

2.87

2.45

IDS

Effective Branching Factor

24

22

20

18

16

14

12

10

8

6

4

2

d

1.261.48164139135-

1.281.48121918094-

1.271.476767276-

1.261.463633056-

1.251.452111301-

1.231.441135393473941

1.241.4273227364404

1.221.38399347127

1.241.3325396384

1.301.341820680

1.451.481213112

1.791.796610

A*(h2)A*(h1)A*(h2)A*(h1)IDS

Search Cost

h1: number of misplaced tiles
h2: Manhattan distance

3

Constructing Admissible Heuristics

• Use an admissible heuristic derived from a relaxed
version of the problem.

• Use information from pattern databases that store exact
solutions to subproblems of the problem.

• Use inductive learning methods.

Example: A*

A B

C

D

8 1

2
1

2

3

h=0

h=5
h=2

h=2

goal

Assume: h admissible; f non-decreasing along any path.

Proof [Optimality of A*]:
Let G be an optimal goal state, with path cost f*.
Let G2 be a suboptimal goal state, with path cost g(G2) > f*.
Let n is a node on an optimal path to G.

Assume that G2 is expanded before n:
• Because h is admissible, we must have

f* ≥ f(n).
• If n is not expanded before expanding G2, we must have

f(n) ≥ f(G2).
• Gives us f* ≥ f(G2) = g(G2).
• Contradiction to G2 suboptimal!

Proof of the optimality of A* Proving the optimality of A*

Lemma: If h is admissible, then f=g+h can be made non decreasing.

1. g is non-decreasing since cost positive.

2. But h can be increasing, while still admissible.
Example: Node p, with f=3+4=7; child n, with f=4+2=6.

3. But because any path through n is also a path through p, we
can see that the value 6 is meaningless, because we already
know the true cost is at least 7 (because h is admissible).

4. So, make f = max (f(p),g(n)+h(n))

A*
Optimal: yes

Complete: Unless there are infinitely many nodes with f(n)<f*.
Assume locally finite:
(1) finite branching, (2) every operator costs at least

Complexity (time and space): Still exponential because of
breadth-first nature. Unless |h(n) – h*(n)| ≤ O(log(h*(n))),
with h* true cost of getting to goal.

A* is optimally efficient: given the information in h, no
other optimal search method can expand fewer nodes.

0δ >

IDA*

Memory is a problem for the A* algorithms.

IDA* is like iterative deepening, but uses an f-cost limit
rather than a depth limit.

At each iteration, the cutoff value is the smallest f-cost of any
node that exceeded the cutoff on the previous iteration.

Each iteration uses conventional depth-first search.

4

Similar to a DFS, but keeps track of the f-value of the best
alternative path available from any ancestor of the current
node.

If current node exceeds this limit, recursion unwinds back to the
alternative path, replacing the f-value of each node along the
path with the best f-value of its children.

(RBFS remembers the f-value of the best leaf in the forgotten
subtree.)

Recursive best-first search (RBFS) SMA*
Simplified Memory-Bounded A* Search:
• While memory available, proceeds just like A*, expanding

the best leaf.
• If memory is full, drops the worst leaf node - the one the

highest f-cost; and stores this value in its parent node.

(Won't know which way to go from this node, but we will
have some idea of how worthwhile it is to explore the
node.)

