Foundations of Artificial Intelligence

Problem-Solving as Search

CS472 - Fall 2007
Thorsten Joachims

Intelligent Agents

Agent:

Anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through
actuators.

Agent Function:
Agent behavior is determined by the agent function that maps
any given percept sequence to an action.

Agent Program:
The agent function for an artificial agent will be implemented
by an agent program.

A Simple Reflex Agent

What the world
is like now

Condition-action rules What action |
should do now

Agent with Model and Internal State

Condition-action rules What action |
should do now

What the world
is like now

Goal-Based Agent

What the world is
like now

What it will be like

if 1 do action A
What action |

should do now

Problem Solving as Search

- Search is a central topic in Al
- Originated with Newell and Simon's work on
problem solving. Famous book:
“Human Problem Solving” (1972)

- Automated reasoning is a natural search task

- More recently: Given that almost all Al formalisms
(planning, learning, etc.) are NP-complete or worse,
some form of search is generally unavoidable (no
“smarter” algorithm available).

Defining a Search Problem

State space - described by
initial state - starting state
actions - possible actions available
successor function; operators - given a
particular state x, returns a set of
< action, successor > pairs

Goal test - determines whether a given state is a
goal state.

Path cost - function that assigns a cost to a path

The 8 Puzzle

1

HEgpHlHnRn
Initial State Goal State

Cryptarithmetic

SEND
+ MORE

Find (non-duplicate) substitution of digits for letters such that the
resulting sum is arithmetically correct.

Each letter must stand for a different digit.

Solving a Search Problem: State Space Search

Input:
— Initial state
— Goal test
— Successor function
— Path cost function

Output:
— Path from initial state to goal state.
— Solution quality is measured by the path cost.

Generic Search Algorithm

L = make-list(initial-state)
loop
node = remove-front(L) (node contains path
of how the algorithm
got there)
if goal-test(node) == true then
return(path to node)
S = successors (node)
insert (S.L)
until L is empty
return failure

Search procedure defines a search tree

Search tree
root node - initial state
children of a node - successor states
fringe of tree - L: states not yet expanded

Search strategy - algorithm for deciding which leaf node to
expand next.
stack: Depth-First Search (DFS).
queue: Breadth-First Search (BFS).

Solving the 8-Puzzle

- |

K

-
-
B

e e] Lelleds
Start State Goal State

What would the search tree look like after the start state was
expanded?

Node Data Structure

PARENT-NODE

NOD

STATE S

ACTION= right
DEPTH=6
PATH-COST=6

CHILD-NODE CHILD-NODE

Evaluating a Search Strategy

Completeness:
Is the strategy guaranteed to find a solution when there is one?

Time Complexity:
How long does it take to find a solution?

Space Complexity:
How much memory does it need?

Optimality:
Does strategy always find a lowest-cost path to solution? (this
may include different cost of one solution vs. another).

Uninformed search: BFS
AN NN
NTOAN

Consider paths of length 1, then of length 2, then of length 3,
then of length 4,....

Time and Memory Requirements for BFS —
O(bd+l)

Let b = branching factor, d = solution depth, then the
maximum number of nodes generated is:

b+b?+..+bd+ (b¥i-b)

0 N AN

VANVAWAN

Time and Memory Requirements for BFS — O(bd+1)

Example:

«b=10

« 10000 nodes/second

« each node requires 1000 bytes of storage

Depth Nodes Time Memory

2 1100 .11 sec 1 meg

4 111,100 11 sec 106 meg
6 107 19 min 10 gig

8 10° 3lhrs 1tera
10 o1 129 days 101 tera
12 101 35yrs 10 peta

14 101 3523yrs lexa

Uniform-cost Search

Use BFS, but always expand the lowest-cost node on the fringe as
measured by path cost g(n).

Requirement: g(Successor(n)) > g(n) N 1 10

Uninformed search: DFS

A aN N TN
¢ . /o\. ® () . /.\. ® o /o\.

DFS vs. BFS
Complete Optimal Time Space
BFS YES YES O(be+1) O(b+1)
DFS Finite depth NO O(b™) O(bm)

m is maximum depth

Time

m = d: DFS typically wins

m > d: BFS might win

m is infinite: BFS probably will do better
Space

DFS almost always beats BFS

Which search should | use?
Depends on the problem.

If there may be infinite paths, then depth-first is probably bad.
If goal is at a known depth, then depth-first is good.

If there is a large (possibly infinite) branching factor, then
breadth-first is probably bad.

(Could try nondeterministic search. Expand an open node at
random.)

Iterative Deepening [Korf 1985]
ldea:
Use an artificial depth cutoff, c.

If search to depth ¢ succeeds, we're done.
If not, increase ¢ by 1 and start over.

Each iteration searches using depth-limited DFS.

Limit=0e Iterative Deepening

o a\
/.\ /N e o
Limit2e & ° ./.\. ¢ o/ \o

[] Y]
SN N A A A
® ° o (] N\ 1 e @ o
<N\ ./'\ ° \ W

as VAN O\

Limit=3 @

Cost of Iterative Deepening

space: O(bd) as in DFS, time: O(b%)

b ratio of IDS to DFS
2 3
3 2
5 15
10 12
25 1.08
100 1.02

Bidirectional Search

[frem ATM A Figure 3.17)

Comparing Search Strategies

Criterion Breadth Uniform- Depth- lIterative Bidirectional
-First Cost First Deepening (if applicable)
e
Time pd+L b pm pd per2
o
Space pe+t b bm bd pe2
Optimal? | Yes yes no yes yes
Complete? | Yes Yes No Yes Yes

***Note that many of the “yes's" above have caveats, which
we discussed when covering each of the algorithms.

