

Intelligent Agents

Agent:

Anything that can be viewed as perceiving its **environment** through **sensors** and acting upon that environment through **actuators**.

Agent Function:

Agent behavior is determined by the agent function that maps any given percept sequence to an action.

Agent Program:

The agent function for an artificial agent will be implemented by an agent program.

Defining a Search Problem

State space - described by initial state - starting state actions - possible actions available successor function; operators - given a particular state x, returns a set of < action, successor > pairs

Goal test - determines whether a given state is a goal state.

Path cost - function that assigns a cost to a path

Cryptarithmetic

SEND + MORE -----MONEY

Find (non-duplicate) substitution of digits for letters such that the resulting sum is arithmetically correct.

Each letter must stand for a different digit.

Solving a Search Problem: State Space Search

Input:

- Initial state
- Goal test
- Successor functionPath cost function
- Falli cost function

Output:

- Path from initial state to goal state.
- Solution quality is measured by the path cost.

Generic Search Algorithm

Search procedure defines a search tree

Search tree

root node - initial state
children of a node - successor states
fringe of tree - L: states not yet expanded

Search strategy - algorithm for deciding which leaf node to expand next. stack: Depth-First Search (DFS).

queue: Breadth-First Search (BFS).

Evaluating a Search Strategy

Completeness:

Is the strategy guaranteed to find a solution when there is one?

Time Complexity: How long does it take to find a solution?

Space Complexity: How much memory does it need?

Optimality:

Does strategy always find a lowest-cost path to solution? (this may include different cost of one solution vs. another).

Depth	Nodes	Time	Memory
2	1100	.11 sec	1 meg
4	111,100	11 sec	106 meg
6	107	19 min	10 gig
8	109	31 hrs	1 tera
10	1011	129 days	101 tera
12	1013	35 yrs	10 peta
14	1015	3523 yrs	1 exa

		DFS vs.	BFS	
	Complete	Optimal	Time	Space
BFS	YES	YES	$O(b^{d+1})$	$O(b^{d+1})$
DFS	Finite depth	NO	$O(b^m)$	O(bm)
Time				
	m = d: DFS ty	pically wins		
	m > d: BFS m m is infinite: 1	ight win BFS probably	will do bette	er
Space	DFS almost al	ways beats B	BFS	

Iterative Deepening [Korf 1985]

Idea:

Use an artificial depth cutoff, c.

If search to depth c succeeds, we're done. If not, increase c by 1 and start over.

Each iteration searches using depth-limited DFS.

C	Cost of Iterative Deepening		
space: O(bd)	as in DF	S, time: O(b ^d)	
	b	ratio of IDS to DFS	
	2	3	
	3	2	
	5	1.5	
	10	1.2	
	25	1.08	
	100	1.02	1

Criterion	Breadth -First	Uniform- Cost	Depth- First	Iterative Deepening	Bidirectional (if applicable)
Time	b ^{d+1}	b ^{1+C} C*	b^m	b^d	<i>b</i> ^{<i>d</i>/2}
Space	b^{d+1}	$b^{1+\frac{c}{a}}$	bm	bd	$b^{d/2}$
Optimal?	Yes	yes	no	yes	yes
Complete?	Yes	Yes	No	Yes	Yes