
Foundations of Artificial Intelligence

Problem-Solving as Search

CS472 – Fall 2007
Thorsten Joachims

Intelligent Agents
Agent:
Anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through
actuators.

Agent Function:
Agent behavior is determined by the agent function that maps
any given percept sequence to an action.

Agent Program:
The agent function for an artificial agent will be implemented
by an agent program.

A Simple Reflex Agent

Environm
ent

What the world
is like now

What action I
should do now

Condition-action rules

SensorsAgent

Actuators

Agent with Model and Internal State

Environm
ent

What the world
is like now

What action I
should do now

Condition-action rules

SensorsAgent

Actuators

How the world evolves

What my actions do

State

Goal-Based Agent

Environm
ent

What the world is
like now

What action I
should do now

Goals

SensorsAgent

Actuators

How the world evolves

What my actions do

State

What it will be like
if I do action A

Problem Solving as Search
- Search is a central topic in AI

- Originated with Newell and Simon's work on
problem solving. Famous book:

“Human Problem Solving” (1972)

- Automated reasoning is a natural search task

- More recently: Given that almost all AI formalisms
(planning, learning, etc.) are NP-complete or worse,
some form of search is generally unavoidable (no
“smarter” algorithm available).

Defining a Search Problem

State space - described by
initial state - starting state
actions - possible actions available
successor function; operators - given a
particular state x, returns a set of
< action, successor > pairs

Goal test - determines whether a given state is a
goal state.
Path cost - function that assigns a cost to a path

The 8 Puzzle

4

45

6 1

7 3 2

8

21

8

3

7 6 5

Initial State Goal State

Cryptarithmetic

SEND
+ MORE

MONEY

Find (non-duplicate) substitution of digits for letters such that the
resulting sum is arithmetically correct.

Each letter must stand for a different digit.

Solving a Search Problem: State Space Search

Input:
– Initial state
– Goal test
– Successor function
– Path cost function

Output:
– Path from initial state to goal state.
– Solution quality is measured by the path cost.

Generic Search Algorithm
L = make-list(initial-state)
loop

node = remove-front(L) (node contains path
of how the algorithm
got there)

if goal-test(node) == true then
return(path to node)

S = successors (node)
insert (S,L)

until L is empty
return failure

Search procedure defines a search tree

Search tree
root node - initial state
children of a node - successor states
fringe of tree - L: states not yet expanded

Search strategy - algorithm for deciding which leaf node to
expand next.

stack: Depth-First Search (DFS).
queue: Breadth-First Search (BFS).

Solving the 8-Puzzle

4

45

6 1

7 3 2

8

21

8

3

7 6 5

Start State Goal State

What would the search tree look like after the start state was
expanded?

Node Data Structure

45

6 1

7 3 2

8

PARENT-NODE

ACTION= right
DEPTH=6
PATH-COST=6

CHILD-NODECHILD-NODE

NODE

STATE

Evaluating a Search Strategy

Completeness:
Is the strategy guaranteed to find a solution when there is one?

Time Complexity:
How long does it take to find a solution?

Space Complexity:
How much memory does it need?

Optimality:
Does strategy always find a lowest-cost path to solution? (this
may include different cost of one solution vs. another).

Uninformed search: BFS

Consider paths of length 1, then of length 2, then of length 3,
then of length 4,....

Time and Memory Requirements for BFS –
O(bd+1)

Let b = branching factor, d = solution depth, then the
maximum number of nodes generated is:

b + b2 + ... + bd + (bd+1-b)

Time and Memory Requirements for BFS – O(bd+1)

Example:
• b = 10
• 10000 nodes/second
• each node requires 1000 bytes of storage

1 exa3523 yrs101514
10 peta35 yrs101312
101 tera129 days101110
1 tera31 hrs1098
10 gig19 min1076
106 meg11 sec111,1004
1 meg.11 sec11002
MemoryTimeNodesDepth

Uniform-cost Search

s s

s

s

0

A

A

A

A
B

B

B

C

C

CC

G

G G

G

1 5

5

5 55

15

15

15

15
11

11 10

s
1

B
10

Requirement: g(Successor(n)) g(n) ≥

Use BFS, but always expand the lowest-cost node on the fringe as
measured by path cost g(n).

Uninformed search: DFS

DFS vs. BFS

Time
m = d: DFS typically wins
m > d: BFS might win
m is infinite: BFS probably will do better

Space
DFS almost always beats BFS

O(bm)O(bm)NOFinite depthDFS

O(bd+1)O(bd+1)YESYESBFS
SpaceTimeOptimalComplete

m is maximum depth

Which search should I use?
Depends on the problem.

If there may be infinite paths, then depth-first is probably bad.
If goal is at a known depth, then depth-first is good.

If there is a large (possibly infinite) branching factor, then
breadth-first is probably bad.

(Could try nondeterministic search. Expand an open node at
random.)

Iterative Deepening [Korf 1985]

Idea:
Use an artificial depth cutoff, c.

If search to depth c succeeds, we're done.
If not, increase c by 1 and start over.

Each iteration searches using depth-limited DFS.

Limit=1

Iterative DeepeningLimit=0

Limit=2

Limit=3

Cost of Iterative Deepening

space: O(bd) as in DFS, time: O(bd)

1.02100

1.0825

1.210

1.55

23

32

ratio of IDS to DFSb

Bidirectional Search

Comparing Search Strategies

***Note that many of the ``yes's'' above have caveats, which
we discussed when covering each of the algorithms.

YesYesNoYesYesComplete?

yesyesnoyesYesOptimal?
bd/2bdbmbd+1Space
bd/2bdbmbd+1Time

Bidirectional
(if applicable)

Iterative
Deepening

Depth-
First

Uniform-
Cost

Breadth
-First

Criterion

*1 C

b
+
∈

*1 C

b
+
∈

