CS4120/4121/5120/5121—Spring 2026
Programming Assignment 1
Implementing Lexical Analysis
Due: Wednesday, February 4, 11:59pm

This programming assignment requires you to implement a lexer (also called a scanner or a
tokenizer) for the Eta programming language. As discussed in Lecture 2, a lexer provides a stream
of tokens (also called symbols or lexemes) given a stream of characters.

0 Changes

e Update version control instructions.
e Update Al policy for the course.
e Changes to the submission instructions.

1 Instructions
1.1 Grading

Solutions will be graded on design, correctness, and style. A good design makes the implementation
easy to understand and maximizes code sharing. A correct program compiles without errors or
warnings, and behaves according to the requirements given here. A program with good style is clear,
concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic
variable names and proper indentation. Keep your code within an 80-character width. If writ-
ing Java, most methods should be accompanied by Javadoc-compliant specifications, and class
invariants should always be documented. Other comments may be included to explain nonobvious
implementation details. Use similar best practices for other programming languages, but be sure to
consult with the staff before choosing a language other than Java 11.

1.2 Partners

You will work in a group of 3—4 students for this assignment. Find your partners as soon as possible,
and set up your group on CMSX so we know who has partners and who does not. Ed also has
support for soliciting partners. If you are having trouble finding partners, ask the course staff, and
we will try to find you a group in a fair way.

Remember that the course staff is happy to help with problems you run into. Read all Ed posts
and ask questions that have not been addressed, attend office hours, or set up meetings with any
course staff member for help.

CS4120/4121/5120/5121 Spring 2026 1/7 Programming Assignment 1


http://www.cs.cornell.edu/courses/cs4120/2026sp/project/language.pdf

1.3 Package names

Please ensure that all Java code you submit is contained within a package (or similar, for other
languages) whose name contains the NetID of at least one of your group members. Subpackages
under this package are allowed and strongly encouraged. They can be named however you would
like.

1.4 Tips

This assignment is much smaller than future assignments: it is intended primarily as a warmup that
gives your group the chance to practice working together. Later assignments will stress your ability
to work effectively as a group, so now is a good time to set up the infrastructure and collaboration
style that you will use for the rest of the semester. Some tips:

e Meet with your partners as early as possible to work out the design and to discuss the responsi-
bilities for the assignment. Keep meeting and talking as the project progresses. Be prepared for
your meetings. Be ready to present proposals to your partners for what to do, and to explain the
work you have done. Good communication is essential.

¢ You should partition the assignment into parts that can be worked on largely separately. Avoid
the temptation to do the assignment more “efficiently” by having a subset of the group do all
the work. To succeed at the course project, your group needs to figure out how to work together
effectively—and the sooner, the better.

e A good way to partition an assignment into parts that can be worked on separately is to agree as a
group on, first, what the different modules will be, and further, exactly what their interfaces are,
including detailed specifications. The individual modules can then be implemented independently
with confidence that integrating them will be straightforward.

2 Design overview document

We expect your group to submit an overview document. The Overview Document Specification
outlines our expectations. Writing a clear document with good use of language is important.

These are key topics to include in your design overview document:

Have you thought about the key data structures in this assignment?

Have you thought through the key algorithms and identified implementation challenges?

Have you thought about your implementation strategy and division of responsibilities between
the group members?

Do you have a testing strategy that covers the possible inputs and the different kinds of function-
ality you are implementing?

CS4120/4121/5120/5121 Spring 2026 2/7 Programming Assignment 1


http://www.cs.cornell.edu/courses/cs4120/2026sp/hw/overview-requirements.html

3 Version control

Working with group members effectively is a key learning goal for this project. To facilitate this
goal, you must use version control to manage your partnership. Large modern software is always
managed with version control. While it may require some learning, using version control is a
valuable skill to have. In the short term, you will reap the benefits as you proceed further into the
project.

As always, making your code public would be a violation of academic integrity, so be sure to
use a private repository. For this class, we would like you to use Cornell Github. You should be
already added to an organization called cs4120-2026sp. Create a new private repository for your
group under this organization (Check if your group mate has already created one. One repo per
group.). You may choose any appropriate name for your repository, such as a customized group
name. Make sure to add all-and only—your group members as collaborators. Additionally, set up
.gitignore files appropriately to avoid committing large binaries, derived files, IDE files, and other
unnecessary files.

The instructor and TAs have access to your repository and will look at your commit history
during grading to ensure that everyone in the group contributed. If your commit history does not
clearly reflect individual contributions, briefly mention it in your overview document. (For example,
if you employ pair programming for elements of the assignment (not a bad idea!), you may wish to
clarify this in your overview document, as only one member would appear on the commit history
for that work.)

4 Lexer

We encourage you to use a lexer generator such as JFlex in your implementation, but it is not
required. If you do use a lexer generator, you may wish to consider using the adapter pattern to aid
you in your implementation. A example grammar file for JFlex, example. flex, is included in the
release folder that you might find useful to peruse.

5 Command-line interface

A command-line interface is the primary channel for users to interact with your compiler. As your
compiler matures, your command-line interface will support a growing number of possible options.

A general form for the command-line interface is as follows:
./etac [options] <source files>
For this assignment, at least the following three options must be supported:
e —-help: Print a synopsis of options.
A synopsis of options lists all possible options along with brief descriptions. No source files

are required if this option is specified. Invoking etac without any source files should also print a
synopsis. To see an example of a synopsis, run javac from the command line.

CS4120/4121/5120/5121 Spring 2026 3/7 Programming Assignment 1


https://github.coecis.cornell.edu
https://github.coecis.cornell.edu/orgs/cs4120-2026sp
https://github.com/github/gitignore
http://wwww.jflex.de/
http://en.wikipedia.org/wiki/Adapter_pattern

--lex: Generate output from lexical analysis.

For each source file named filename. eta, a diagnostic output file named filename.lexed
is generated to provide the result of lexing the source file. Each line in the output file corresponds
to each token in the source file in the following format:

<line>:<column> <token-type>

where <line> and <column> indicate the beginning position of the token, and <token-type>
is one of the following:

— id <name> for an identifier

— integer <value> for an integer constant

— character <value> for a character constant, where value excludes enclosing quotes
— string <value> for a string constant, where value excludes enclosing quotes

— <symbol> for a symbol such as parentheses, punctuation, and operators

— <keyword> for a keyword, including names and values such as int and true

Non-printable and special characters in character and string literal constants should be escaped in
the output, as well as Unicode character escapes as described in the Eta Language Specification,
but ordinary printable ASCII characters (e.g., “d”) should not be. Comments and whitespace
should not appear in the output.

A lexical error should result in the following line in the output file:

<line>:<column> error:<description>

where <description> details the error. All valid tokens prior to the location of the error should
be reported as above.
Table 1 shows a few examples of expected results.

-D <path>: Specify where to place generated diagnostic files.

If given, the compiler should place generated diagnostic files (from the --1ex option), in the
directory relative to this path. The default is the current directory in which etac is run.

For example, if this path is p and the file to be generated is a/r/se.lexed, the compiler
should place this file at p/a/r/se.lexed.

To parse command-line arguments, it is common to use a library instead of implementing such

functionality manually (although it’s perfectly fine and not difficult to implement it manually).
Below are some common libraries for various languages that you might find useful:

Java: Commons CLI, Argparse4j, args4;j

OCaml: Command module in Jane Street Core (see the Real World Ocaml chapter)
Haskell: optparse-applicative

Scala: scopt, scallop

6 Test harness

The test harness is a framework for testing your implementation and for grading your submissions.
Named eth, the test harness has been tested to work in a 64-bit linux virtual-machine environment.
The VM distribution contains instructions for setting up the VM on your machine.

CS4120/4121/5120/5121 Spring 2026 4/7 Programming Assignment 1


http://www.cs.cornell.edu/courses/cs4120/2026sp/project/language.pdf
http://commons.apache.org/proper/commons-cli/
https://argparse4j.github.io/
https://github.com/kohsuke/args4j
https://dev.realworldocaml.org/command-line-parsing.html
http://hackage.haskell.org/package/optparse-applicative
https://github.com/scopt/scopt
https://github.com/scallop/scallop
http://www.cs.cornell.edu/courses/cs4120/2026sp/project/eth.tar.gz
http://www.cs.cornell.edu/courses/cs4120/2026sp/project/DockerREADME

Content of input file Content of output file

:1 use

:5 id io
:1 id main
15 (

:6 id args
:10

use io

main(args: int[]1[]) {
print("Hello, Worl\x{64}'!'\n")
c3po: int = ’x’ + 47;
r2d2: int = c3po // No Han Solo
}

©O© 00 W N
~

113 =

:15 character x
119 +

:21 integer 47
:23 ;

:3 id r2d2

17

:9 int

113 =

:15 id c3po

:1 3

:1 id x

12

:3 bool

:8 =

:10 integer 4

:11 id all

11 id x

:3 =

:5 error:Invalid character constant

x:bool = 4all

X =
this = does not matter

1
1
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
5
5 :
5:9 int
5
5
5
5
5
6
6
6
6
6
7
1
1
1
1
1
1
2
2
2

Table 1: Examples of running etac with --1ex option

CS4120/4121/5120/5121 Spring 2026 5/7 Programming Assignment 1



The VM setup script will download and install the test harness, along with other necessary
components, such as Java, JFlex, Maven, and ant, to build and run your compiler. The full
list of currently available features can be found in root-bootstrap.sh in the VM distribution.
Additional components may be requested on Ed.

eth is installed in the eth directory and can be invoked from the command line. A general form
for the eth command-line interface is as follows:

eth [options] <test script>

Two options are of particular interest:

e —compilerpath <path>: Specify where to find the compiler
e -testpath <path>: Specify where to find the test files

For the full list of currently available options, invoke eth.

An eth test script specifies a number of test cases to run. The directory eth/tests/pal
contains a sample test script (ethScript), along with several test cases. ethScript also lists the
syntax of an eth test script.

To request eth to build your compiler, a command build can begin the test script. Upon
receiving a build command, eth will invoke command etac-build in the compiler directory.
etac-build is responsible for building the compiler in its entirety. Currently, eth will execute all
commands in a test script, even if the build fails. Therefore, if you already have your compiler built
by some other means, later tests can still succeed even if your etac-build fails or is unavailable.
For each test case, eth will invoke command etac in the compiler directory.

The result of running the test harness is summarized in the last line of the output, which looks
like this:

ethScript: ? out of 16 tests succeeded.

The details for each test case can be found prior to the last line.

eth was used successfully in the last iteration of the course, but bugs are always possible. Please
report errors, request additional features, or give feedback on Ed.

7 Submission

Before submitting, you should first prepare your repository. Make sure that your repository is
complete and ready to be graded. In particular, it should include all of the following:

e All source code needed to compile and run your project, including any required third-party
libraries.

e All test cases and any scripts used to run them.
e A design overview document, as described in §2, placed in the root of your repository.

e A README file explaining how to navigate, build, run, and test your code (this may overlap with
the design overview).

CS4120/4121/5120/5121 Spring 2026 6/7 Programming Assignment 1



e Removal of unnecessary files, such as large binaries, generated files, IDE metadata, or OS
metadata.

Once your repository is ready, go to your repository on the Cornell GitHub website and
create a new release (found in the right sidebar). Use the programming assignment title—e.g.,
Programming Assignment 1: Radio Recommender System as the title of your release, and
set the tag to submissions. Publish your release and download the release ZIP file. Finally, submit
the release ZIP file on CMSX before the deadline of Wednesday, February 4, 11:59pm. All of these
steps must be completed on time.

Your repository should be self-contained, meaning that graders should be able to clone it and
build your project without additional setup. Using Git submodules is allowed; if you do so, ensure
that git clone --recursive your_repo retrieves everything needed to build and run your
project.

For smaller libraries, it is often easy and effective to include the source code directly, but be sure
to make clear what is library code, e.g. by package name. JAR files also work well, but sometimes
do not include Javadoc and are less well integrated with your IDE. Your mileage may vary.

If you use a lexer generator, please include the lexer input file, e.g., *. flex. Your etac-build
should use this file to generate source code, and you should not submit the corresponding generated
source code file (e.g. . java).

Finally, remember that clear and well-written documentation—including commit messages, the
design overview, and the README—does not just help your graders; they also help you and your
partners.

8 Al Policy

You may use Al tools such as ChatGPT to assist with small, well-scoped pieces of code. However,
you should not use Al tools to generate large portions of your code or core functionality. Using Al
too much is a common pitfall and tends to backfire in this course.

In your design overview document, please write down where and how you used Al tools, if at
all.

The Vibe Mirage.

Who needs to write code anymore—don’t we just ask generative Al to do the work
for us? This approach may sound like it will save time and effort, but it rarely does.
Al-generated code often looks convincing until it is tested carefully and reveals subtle
bugs that cost far more time than they save. Because each stage of the project builds on
your existing code, your foundations must be solid. Relying on Al can undermine your
understanding of your own code, and that understanding is critical for success.

CS4120/4121/5120/5121 Spring 2026 777 Programming Assignment 1



	Changes
	Instructions
	Grading
	Partners
	Package names
	Tips

	Design overview document
	Version control
	Lexer
	Command-line interface
	Test harness
	Submission
	AI Policy

