
CS4120/4121/5120/5121—Spring 2023
Eta Language Specification

Cornell University
Version of April 19, 2023

η
In this course you will start by building a compiler for a language called Eta, named after the Greek letter

η. Eta is an imperative, procedural language, like C. The next generation of the language will have additional
features to help build more complex programs. But at present, developers must make do without them.

This document gives a brief specification for the Eta language. Toward brevity, the specification is
deliberately vague about some issues. Part of your task is to resolve any ambiguities in the specification in a
reasonable way. Identifying and resolving specification ambiguities is an important job for any engineer.
You may also make extensions to the language as long as they are backward-compatible.

0 Changes

• 2/12: Inconsistency was fixed in treatment of multiple assignment in sections 3.1 and 6.
• 1/29: Syntax of literal integer constants now allows 0 (Section 4.1).
• 1/27: The multiple-assignment feature was extended in expressive power (Section 3.1).

1 Overview of features

Eta programs consist of a single source file containing definitions of one or more functions. Execution of a
program consists of evaluating a call to the distinguished function named main.

The language has two primitive types: integers (int) and booleans (bool). The array type T[] exists for
any type T, so T[][] represents an array of arrays.

Functions may return a value, but need not. In Eta, a function that does not return a value is called a
procedure. A function may take multiple arguments. Unlike in languages such as C and Java, a function
may also return multiple results.

Statement and expression forms should largely be familiar to C programmers.
There is no string type, but the type int[] may be used for most of the same purposes. Literal string

constants have this type.

2 Variables

Variables are declared by following them with a type declaration and an optional initialization expression.
There are no holes in scope; a variable may not be declared when another variable of the same name is
already in scope. Here are some examples of variable declarations in Eta:

x:int = 2;

z:int

b: bool, i:int = f(x)

s: int[] = "Hello";

A variable declaration need not initialize the variable, as the declaration of z shows. Use of the value
of an uninitialized variable has undefined behavior. Eta compilers are not required to detect the use of
uninitialized variables.1

1This would be a nice extension to the language!

CS4120/4121/5120/5121 Spring 2023 1/7 Eta Language Specification



Identifiers, including variable names, start with any letter and may continue with any sequence of letters,
numbers, the underscore character (_), or single-quote characters (’).

As in Java, variables are in scope from the point of declaration till the end of their block. A variable
declaration may occur in the middle of the block, as in Java. A variable declaration that is the last statement
in its block is in scope nowhere.

The value of a variable can be changed imperatively using an assignment statement, as in the following
examples:

x = x + 1

s = {1, 2, 3}

b = !b

3 Function definitions

A program contains a sequence of function definitions, including the definitions of the function main. All
functions in the program are in scope in the bodies of all functions, even if the use precedes the definition.
Hence, functions may be recursive or mutually recursive.

A function definition starts with the name of the function, followed by its argument(s), its return type(s),
and the definition of its code. Only one function with a given name can exist in a program. There is no
overloading.

For example, below is a function to compute the GCD of two integers. The body of the function is a block
of statements. The result of a function is returned using the return statement. To simplify parsing, any
return statement can only occur as the last statement in its block.

1 // Return the greatest common divisor of two integers

2 gcd(a:int, b:int):int {

3 while (a != 0) {
4 if (a < b) b = b - a
5 else a = a - b
6 }

7 return b
8 }

3.1 Multiple results

Unlike in C or Java, a function may return multiple results, indicated in the function definition by giving a
list of return types, separated by commas. If this list is absent, the function is a procedure. The result of a
function is a list of expressions, separated by commas. For example, the following function returns a pair of
integers.

1 // Add two rational numbers p1/q1 and p2/q2, returning

2 // two numbers p3, q3 representing their sum, p3/q3.

3 ratadd(p1:int, q1:int, p2:int, q2:int) : int, int {

4 g:int = gcd(q1,q2)

5 p3:int = p1*(q2/g) + p2*(q1/g)

6 return p3, q1/g*q2
7 }

Results from a function that returns multiple values can be used only through a multiple assignment in
which the left-hand side is a sequence of either assignable expressions or variable declarations,

For example, line 2 in the following code has the effect of assigning 11 to p and 15 to q; line 3 assigns 6 to
q’ and discards the first returned value, 5.

CS4120/4121/5120/5121 Spring 2023 2/7 Eta Language Specification



1 q:int

2 p:int, q = ratadd(2, 5, 1, 3)

3 _, q’:int = ratadd(1, 2, 1, 3)

The pseudo-variable _ can be used to discard one of the results, as in line 2, which assigns 6 to q’ but
discards the corresponding numerator. The underscore can also be used to explicitly discard the result of a
function call that returns a single result.

A multiple assignment can also be used with a right-hand side that is a comma-separated list of expres-
sions. In this case, the expressions on the right-hand side are all evaluated before any assignments. For
example, the following statement swaps the values of the variables x and y:

x, y = y, x

Assignable expressions also include array index expressions and _, so it is also possible to swap two
array elements without a temporary variable:

a[i], a[j] = a[j], a[i]

3.2 Global variables

A program can contain global variable declarations, written at the top level outside any function definition.
Global variables are in scope throughout the program, just like function definitions.

1 len: int = 100

2 n’: int = -1

3 debug: bool = false

4 points: int[]

Integer variables may be initialized at the point of declaration to an integer literal, and boolean variables
may be initialized to a boolean literal. Global arrays can be declared but cannot be initialized at the point of
declaration. All global variables in scope may have their value changed by assignments in functions, e.g.:

1 debug: bool

2

3 setDebug(b: bool) {

4 debug = b

5 }

4 Data types

4.1 Integers

The type int describes integers from −263 to 263 − 1. They support the usual operations: +, -, *, /, and %,
which all operate modulo 264. In addition, the “high multiplication” operator *>> returns the high 64 bits of
the 128-bit product of its operands. For example, the high multiplication of 232 with itself has the result 1.
This operator is helpful for doing certain kinds of number crunching. Division by zero causes the program
to halt with an error. Integers can be compared with the usual Java/C relational operators: ==, !=, <, <=, >,
and >=.

A literal integer constant is denoted by an optional minus sign and a sequence of digits starting with a
digit in 1–9, or a single 0. As in Java, a character literal may be used to denote an integer, so ’a’ is the same
as 97. Character literals may signify any legal Unicode character, with allowed codes ranging from U+000000
to U+10FFFF.

To keep the language simple, Eta does not support floating-point numbers. Programmers wishing to
compute on other kinds of numbers must use other numeric representations such as rational numbers or
fixed-point representations.

CS4120/4121/5120/5121 Spring 2023 3/7 Eta Language Specification

http://en.wikipedia.org/wiki/Fixed-point_arithmetic


4.2 Booleans

The type bool has two values, true and false. The binary operator & is a short-circuit ‘and’ and the operator
| is short-circuit ‘or’. The unary operation ! is negation. Booleans can also be compared with == and !=.

4.3 Arrays

An array T[] is a fixed-length sequence of mutable cells of type T. If a is an array and i is an integer, then
the value of the array index expression a[i] is the contents of the array cell at index i. To be a valid index,
an index imust be nonnegative and less than the length of the array. If i is not valid, this is caught at run
time and the program halts with an error message. The expression length(e) gives the length of the array e.

Array cells may be assigned to using an array index expression on the left-hand side of an assignment, as
at lines 9 and 10 of the following procedure, whose effect is to insertion-sort its input array.

1 sort(a: int[]) {

2 i:int = 0

3 n:int = length(a)

4 while i < n {

5 j:int = i

6 while j > 0 {

7 if a[j-1] > a[j] {

8 swap:int = a[j]

9 a[j] = a[j-1]

10 a[j-1] = swap

11 }

12 j = j-1

13 }

14 i = i+1

15 }

16 }

An array can be constructed by using an array constructor, specifying its elements inside braces. Similar
to the array initializer syntax in Java and C, elements of the array constructor are separated by commas, and
the final element may be followed by a comma. Thus, {} can be used as an array of length zero, and {2,}
can be used as an array of length 1. An array constructor can be used anywhere that an array is expected.

A string literal such as "Hello" may also be used as an array constructor. The following two array
definitions are therefore equivalent:

a: int[] = { 72,101,108,108,111 }

a: int[] = "Hello"

String literals may not span multiple lines in the source file. Like character literals, each character of a
string literal must be a legal Unicode character.

An array of arbitrary length n, whose cells are not initialized, may be created at the point of declaration
by including the length in the declaration of the array. The length is not part of the array’s type and it need
not be a constant:

1 n: int = gcd(10, 2)

2 a: int[n]

3 while n > 0 {
4 n = n - 1

5 a[n] = n

6 }

CS4120/4121/5120/5121 Spring 2023 4/7 Eta Language Specification



Use of uninitialized array cells has undefined results.
Arrays may be compared with == and != to determine whether they are aliases for the same array.

Different arrays with the same contents are considered unequal.
Arrays are implemented by placing the representations of the values of each of their cells contiguously in

memory. They also record their lengths.
The operator +may be used to concatenate two arrays whose elements are of the same type, which is

particularly handy for arrays of int representing strings, e.g.:

1 s: int[] = "Hello" + {13, 10}

Multidimensional arrays Multidimensional arrays are represented by arrays of arrays, as in Java. So the
type int[][] is represented as an array of pointers to arrays. A multidimensional array can be initialized by
providing some or all dimensions in its variable declaration. Consider the following four declarations:

1 a: int[][]

2 b: int[3][4]

3 a = b

4 c: int[3][]

5 c[0] = b[0]; c[1] = b[1]; c[2] = b[2]

6 d: int[][] = {{1, 0}, {0, 1}}

7 err1: int[3] = { 1, 2, 3 } // ILLEGAL

8 err2: int[][3] // ILLEGAL

Line 1 leaves variable a uninitialized. To be used, variable a must be initialized with a pointer to an
array of arrays, as on line 3. Line 2 sets variable b to a pointer to an array of 3 elements, each of which is
initialized to point to an uninitialized array of 4 elements. Line 4 makes c a pointer to an array of 3 elements,
but those elements are not initialized to point to arrays. Line 5 initializes the elements of c to share the same
underlying arrays as a and b. Line 6 initializes d as a 2 × 2 array representing an identity matrix.

Lines 7 and 8 show illegal array declarations. The first one is illegal because it combines two different
ways to initialize the array contents. The second one is illegal because it cannot be created as described: a
dimension is specified after an unspecified dimension.

5 Precedence

Expressions in Eta have different levels of precedence. The following table gives the associativity of the
various operators, in order of decreasing precedence:

Operator Description Associativity
function call, [] left

-, ! integer and logical negation —
*, *>>, /, % multiplication, high multiplication, division, remainder left
+, - addition, subtraction left

<, <=, >=, > comparison operators left
==, != equality operators left
& logical and left
| logical or left

6 Statements

The legal statements, also called commands, are the following:

• An assignment to a variable or to an array element. However, the left-hand side of an assignment (and
thus the assignment itself) cannot begin with an open parenthesis ((), an open brace ({), or a quote (")

CS4120/4121/5120/5121 Spring 2023 5/7 Eta Language Specification



• if and while statements with syntax similar to that in C and Java except that parentheses are not required
in guard expressions.

• A return statement. In a procedure, this is written just as return; in a function with a return type, the
value(s) to be returned follow the return keyword, separated by commas. Unlike in Java, a return
statement may only be used inside a block and must be the last statement in its immediately enclosing
block.

• A call to a procedure (but not a function).
• A block of statements, surrounded by braces. A block may be empty or may contain a sequence of

statements. Each statement in a block may be terminated by a semicolon, but semicolons are entirely
optional, even if statements are on the same line. Anywhere a block of statements is expected, a single
(non-return) statement may be used instead, except in a function definition, where a full block is required.

• A variable declaration, with an optional initialization expression. It may declare multiple variables,
in which case it may be initialized with either a function call with the appropriate return types or a
comma-separated list of expressions of the right types.

7 Lexical considerations

The language is case-sensitive. An input file is a sequence of Unicode characters, encoded using UTF-8.
Therefore ASCII input is always valid.

Comments are indicated by a double slash // followed by any sequence of characters until a newline
character.

Keywords (use, if, while, else, return, length) may not be used as identifiers. Nor may the names or
values of the primitive types (int, bool, true, false).

String and character literals should support some reasonable set of character escapes, including at
least “\\”, “\n”, and “\’”. In addition, an escape of the form “\x{HHHHHH}”, where HHHHHH stands for 1–6
hexadecimal digits (upper or lower case), represents the Unicode character with the corresponding code. For
example “\x{0a}” is the same as “\n”.

You may be more successful parsing negative integer literals as the negation of a positive literal.

8 Source files and interfaces

The Eta compiler compiles a source file with extension .eta to runnable code. It may also read in interface
files that describe external code to be used by the program.

Interface files contain a nonempty set of procedure and function declarations without implementations
and may contain end-of-line comments. Interface files have the extension .eti. To use the procedures and
functions declared in interface file F.eti, a source file includes the top-level declaration “use F”, optionally
terminated by a semicolon. This causes the compiler to look for F.eti. All such “use” declarations must
precede all procedure and function definitions.

Multiple “use” declarations are permitted within one source file. The same function or procedure may
be declared in multiple .eti files that are read in and may also be defined in the source file, but its signature
must match everywhere it appears. Therefore, it is legal to reference an interface more than once in a source
file.

9 Current library interfaces

Interfaces for I/O and corresponding libraries are available, including the following functions from interface
file io:

CS4120/4121/5120/5121 Spring 2023 6/7 Eta Language Specification



1 // I/O support

2

3 print(str: int[]) // Print a string to standard output.

4 println(str: int[]) // Print a string to standard output, followed by a newline and flush.

5 readln() : int[] // Read from standard input until a newline.

6 getchar() : int // Read a single character from standard input.

7 // Return -1 if the end of input has been reached.

8 eof() : bool // Test for end of file on standard input.

Using these functions, we can easily write the canonical “Hello, World!” program:

use io

main(args: int[][]) {

println("Hello, World!")

}

Some utility functions are found in the interface file conv:

1 // String conversion functions

2

3 // If "str" contains a sequence of ASCII characters that correctly represent

4 // an integer constant n, return (n, true). Otherwise return (0, false).

5 parseInt(str: int[]): int, bool

6

7 // Return a sequence of ASCII characters representing the

8 // integer n.

9 unparseInt(n: int): int[]

CS4120/4121/5120/5121 Spring 2023 7/7 Eta Language Specification


	Changes
	Overview of features
	Variables
	Function definitions
	Multiple results
	Global variables

	Data types
	Integers
	Booleans
	Arrays

	Precedence
	Statements
	Lexical considerations
	Source files and interfaces
	Current library interfaces

