
CS4120/4121/5120/5121—Spring 2023
Programming Assignment 5

Assembly Code Generation
Due: Tuesday, April 18, 11:59pm

For this programming assignment, you will implement an assembly-code generator for the Eta
programming language. Assembly code is generated from the intermediate representation, making
your compiler fully functional. The assembly code should be processable by the GNU assembler
and linkable with the runtime library we provide in order to produce working executables.

0 Changes

• None yet; watch this space.

1 Instructions

1.1 Grading

Solutions will be graded on documentation, completeness, correctness, and style. 5% of the score is
allocated to whether bugs in past assignments have been fixed.

1.2 Partners

You will work in a group of 3–4 students for this assignment. This should be the same group as in
the last assignment. If not, please discuss with the course staff.

Remember that the course staff is happy to help with problems you run into. For help, read all
Ed posts and ask questions (that have not already been addressed), attend office hours, or schedule a
meeting with course staff.

1.3 Package names

Please ensure that all Java code you submit is contained within a package whose name contains the
NetID of at least one of your group members. Subpackages under this package are allowed; they
can be named however you would like.

2 Building on previous programming assignments

Use your lexer from PA1, your parser from PA2, your type checker from PA3, and your IR generator
from PA4. Part of your task for this assignment is to fix any problems that you had in the previous
assignments. Discuss these problems in your overview document, and explain briefly how you fixed
them.

CS4120/4121/5120/5121 Spring 2023 1/6 Programming Assignment 5

http://www.cs.cornell.edu/courses/cs4120/2023sp/project/language.pdf
http://www.cs.cornell.edu/courses/cs4120/2023sp/project/language.pdf

3 Runtime library

We require the code you produce to be able to interface with the runtime we provide, and to
interoperate with other functions we may create for testing. For this reason we require you to follow
the ABI specification, and in particular to implement System V calling conventions. You’ve already
done most of the work required to meet the ABI spec in PA4. In this assignment, you’ll take care
of the details that were kept abstract in the IR. In particular, you will need to generate code that
respects ABI rules about caller- and callee-saved registers.

4 Quality of assembly code

We do not expect you to implement optimizations or high-quality register allocation for this
assignment; the goal here is to produce working programs. It’s fine to spill every TEMP in a function
to the stack. However, we do expect you to implement nontrivial instruction selection. Your
tiles should make use of x86-64 instruction set features like complicated addressing modes and
in-memory operands.

5 Assembling your code

It may help you to take a look at the assembly lab and its corresponding example code to get a better
idea of how to assemble and link your generated assembly code.

In particular, in the released runtime/ there is a script linketa.sh that should be useful for
assembling your code as follows:

./linketa.sh -o binary foo.s

Running that command in the VM generates a binary file called binary which you can run by
running

./binary

6 Command-line interface

A general form for the command-line interface is as follows:

etac [options] <source files>

Unless noted below, the expected behaviors of previously available options are as defined in
the previous assignment. etac should support any reasonable combination of options. For this
assignment, the following options are possible:

• --help: Print a synopsis of options.
• --lex: Generate output from lexical analysis.
• --parse: Generate output from syntactic analysis.

CS4120/4121/5120/5121 Spring 2023 2/6 Programming Assignment 5

http://www.cs.cornell.edu/courses/cs4120/2023sp/project/abi.pdf
https://docs.google.com/presentation/d/1BEiLZEEdywTZbqtJgi-xxGqIqJpSXFBvOq7QsjCFvmM/edit?usp=sharing
https://www.cs.cornell.edu/courses/cs4120/2023sp/project/runtime.zip

• --typecheck: Generate output from semantic analysis.
• --irgen: Generate intermediate code.
• --irrun: Generate and interpret intermediate code.
• -sourcepath <path>: Specify where to find input source files.
• -libpath <path>: Specify where to find library interface files.
• -D <path>: Specify where to place generated diagnostic files.
• -d <path>: Specify where to place generated assembly output files.

For each source file given as path/to/file.eta in the command line, an output file named
path/to/file.s is generated to contain the assembly output of the source file. If path is given,
the compiler should place generated assembly output files in the directory relative to this path.
The default is the current directory in which etac is run.

For example, if this path is o/u/t and the file to be generated is path/to/file.s, the
compiler should place this file at o/u/t/path/to/file.s.
• -O: Disable optimizations.
• -target <OS>: Specify the operating system for which to generate code.

OS may be one of linux, windows, and macos. Your compiler is only required to support
the linux option. You may support additional operating systems at your discretion, and you may
define the default operating system for your compiler in a way that is convenient to you.

7 Build script

Your build script etac-build from previous programming assignments should remain available.
The expected behaviors of the build script are as defined in the previous assignment. The build
script must be in the root directory your submission zip file. Problems within the test script from
previous submissions should be fixed.

8 Test harness

eth has been updated to contain test cases for this assignment and to support testing assembly code
generation. While we’ve added a few code generation tests, you will need to develop your own test
cases to properly test your compiler.

You should ensure that you are using the latest version of the Docker virtual machine for this
assignment. To update your Docker image, run docker pull charlessherk/cs4120-vm. The
runtime should already be installed on the VM. Further updates to the runtime can be pulled in by
running the update script in the runtime directory. To update eth, run the update script in the
eth directory on the VM.

Note that the runtime will not work properly in the ARM version of the VM, so ARM users will
need to assemble and run code in the official course VM.

A general form for the eth command-line invocation is as follows:

eth [options] <test-script>

The following options are of particular interest:

CS4120/4121/5120/5121 Spring 2023 3/6 Programming Assignment 5

• -compilerpath <path>: Specify where to find the compiler
• -testpath <path>: Specify where to find the test files
• -workpath <path>: Specify the working directory for the compiler

For the full list of currently available options, invoke eth.
An eth test script specifies a number of test cases to run. Once the updated eth is released,

directory eth/tests/pa5 will contain a sample test script (ethScript), along with several test
cases. ethScript also lists the syntax of an eth test script.

9 Submission

You should submit these files on CMS:

• overview.txt/pdf: Your overview document for the assignment. This file should contain
your names, your NetIDs, all known issues you have with your implementation, and the names
of anyone you have discussed the homework with. It should also include descriptions of any
extensions you implemented. The Overview Document Specification outlines our expectations.
• A zip file containing these items:

– Source code: You should include all source code required to compile and run the project.
Please ensure that the directory structure of your source files is maintained within the archive
so that your code can be compiled upon extraction. If your code depends on any third-party
libraries, please include compilation instructions in your overview document.
Include your parser and lexer generator input files, e.g., *.cup and *.flex, as well as any
generated code.

– Tests: You should include all your test cases and test code that you used to test your program.
Be sure to mention where these files are and to describe your testing strategy in your overview
document.

Do not include any non-source files or directories such as .class, .classpath, .project,
.git, and .gitignore.
• pa5.log: A dump of your commit log since your last submission from the version control system

of your choice.

10 Tips

You should complete your implementation of assembly-code generator as you see fit, but we offer
the following suggestions.

First, download and compile the runtime. Read README.txt. Take a look at the .s files inside
the examples directory, and try assembling and linking them by hand. If you can do it for the
examples, you will be able to do it for your compiler’s output.

As part of your implementation, you will be specifying many different tiles and their mapping
from the IR to the assembly code. Plan out how you will represent and organize these tiles.

Once your compiler is producing runnable binaries, you can test it by compiling an Eta program

CS4120/4121/5120/5121 Spring 2023 4/6 Programming Assignment 5

http://www.cs.cornell.edu/courses/cs4120/2023sp/hw/overview-requirements.html

to a binary and then checking the output of the binary. But be careful—a bug in instruction selection
is hard to uncover using only end-to-end tests. You will need tests that exercise your instruction
selection pass by giving it all kinds of valid IR as input.

10.1 Debugging your compiled code with GDB

If your binary is not working correctly, you can debug it using gdb to understand its behavior. We
talked about how to use gdb in the assembly lab (see the link below). You can set the display mode
to Intel syntax with the command set disassembly-flavor intel (even better, put it in the
file ˜/.gdbinit so you don’t have to bother in the future). Set a breakpoint in your main function
with break _Imain_paai and then run the program with run. You can execute the program one
instruction at a time with the ni instruction. The command x/20i $rip will display the next 20
instructions in the instruction stream, or you can use the disas command to disassemble code from
a symbol. You can print the values of all registers with the info registers command. The gdb
reference manual has many more useful commands.

10.2 Assembler Directives

While looking at compiled code, you might run into instructions that look something like

.text

here .text is a assembler directive. Assembler directives are commands that are part of the assembler
syntax but are not related to the x86 processor instruction set. To distinguish directives from
assembly instructions, directive names begin with a period. You will find it helpful to take a look
into assembler directives. Running an existing compiler like gcc is a good way to see what directives
are needed by the assembler.

Asssembler directives were covered in the assembly lab, so consult the slides from the lab for
more information. Here are some of the useful directives:

• .intel_syntax noprefix
Make the assembler use Intel syntax for instructions.
• .globl name

Declare a global name that will be visible to other program modules. Functions declared in Eta
interfaces should be introduced this way.
• .file ⟨filenum⟩ ⟨file⟩

This directive allows connecting assembly code to the source code that generated it, allowing you
to (optionally) debug Eta code at the source level. The number ⟨filenum⟩ is used to name the file
in the .loc directive. Use of this
• .loc ⟨filenum⟩ ⟨linenum⟩ ⟨column⟩

This directive specifies a precise location of the next instruction in a source file.

CS4120/4121/5120/5121 Spring 2023 5/6 Programming Assignment 5

https://sourceware.org/gdb/current/onlinedocs/gdb.html/index.html#Top
https://sourceware.org/gdb/current/onlinedocs/gdb.html/index.html#Top
https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

11 External links

The following resources may be useful:

• Assembly lab slides
• WikiBook: x86 assembly
• Intel® 64 and IA-32 Architectures Software Developer Manuals
• GNU Assembler manual
• Assembler Directives

Unfortunately, these documents use different assembly syntax: Intel and AT&T syntax respec-
tively. You may use either syntax with your compiler. To use Intel syntax, however, you will need
to use the .intel_syntax directive.

CS4120/4121/5120/5121 Spring 2023 6/6 Programming Assignment 5

https://docs.google.com/presentation/d/1BEiLZEEdywTZbqtJgi-xxGqIqJpSXFBvOq7QsjCFvmM/edit#slide=id.g7126f6adc2_0_22
https://en.wikibooks.org/wiki/X86_Assembly
http://www.intel.com/products/processor/manuals/
https://sourceware.org/binutils/docs/as/
https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

	Changes
	Instructions
	Grading
	Partners
	Package names

	Building on previous programming assignments
	Runtime library
	Quality of assembly code
	Assembling your code
	Command-line interface
	Build script
	Test harness
	Submission
	Tips
	Debugging your compiled code with GDB
	Assembler Directives

	External links

