
CS4120/4121/5120/5121—Spring 2023
Programming Assignment 2
Implementing Syntactic Analysis

Due: Wednesday, February 15th, 11:59pm

This programming assignment requires you to implement a parser for the Eta programming
language. This includes devising a grammar to describe the language’s syntax. The end result
will be a program that reads a Eta source file and produces a pretty-printed version of the AST
representing the program.

0 Changes

• None yet; watch this space.

1 Instructions

1.1 Grading

Solutions will be graded on design, correctness, and style. A good design makes the implementation
easy to understand and maximizes code sharing. A correct program compiles without errors or
warnings, and behaves according to the requirements given here. A program with good style is clear,
concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic vari-
able names and proper indentation. Keep your code within an 80-character width. Methods should
be accompanied by Javadoc-compliant specifications, and class invariants should be documented.
Other comments may be included to explain nonobvious implementation details.

1.2 Partners

You will work in a group of 3–4 students for this assignment. This should be the same group as in
the last assignment.

Remember that the course staff is happy to help with problems you run into. Read all Ed posts
and ask questions that have not been addressed, attend office hours, or set up meetings with any
course staff member for help.

1.3 Package names

Please ensure that all Java code you submit is contained within a package (or similar, for other
languages) whose name contains the NetID of at least one of your group members. Subpackages
under this package are allowed and strongly encouraged. They can be named however you would
like.

CS4120/4121/5120/5121 Spring 2023 1/9 Programming Assignment 2

http://www.cs.cornell.edu/courses/cs4120/2023sp/project/language.pdf
http://www.cs.cornell.edu/courses/cs4120/2023sp/project/language.pdf

1.4 Tips

The key to success on the project is for all group members to contribute effectively. Working with
partners, however, may add challenges. Some tips:

• Meet with your teammates as early as possible to work out the design and to discuss the
responsibilities for the assignment. Keep meeting and talking as the project progresses. Be
prepared for your meetings. Be ready to present proposals to your partners for what to do, and to
explain the work you have done. Good communication is essential.
• One way to partition an assignment into parts that can be worked on separately is to agree on,

first, what the different modules will be, and further, exactly what their interfaces are, including
detailed specifications.
• Drop by office hours and explain your design to a member of the course staff as early as possible.

This will help you avoid big design errors that will cost you as you try to implement.
• This project is a great opportunity to try out pair programming, in which you program in a

pilot/copilot mode. It can be more fun and tends to result in fewer bugs. A key ingredient is to
have the pilot/typist convince the other person that the code meets the predefined spec. It might
be tempting to let the pilot/typist be the person who is more confident on how to implement the
code, but you will probably be more successful if you do the reverse.
• This project is also a great time for code reviews with your group members. Walk through your

code and explain to your partners what you have done, and convince your partners your design is
good. Be ready to give and to accept constructive criticism!
• Sometimes people feel that they are working much harder than their partners. Remember that

when you go to implement something, it tends to take about twice as long as you thought it would.
So what your partners are doing is also twice as hard as it looks. If you think you are working
twice as hard as your partners, you two are probably about even!

2 Design overview document

We expect your group to submit an overview document. The Overview Document Specification
outlines our expectations.

3 Building on PA1

Use your lexer from PA1. Part of your task for this assignment is to fix any problems that you had
in PA1.

If we discovered a problem with your lexer, you must devise one or more test cases that clearly
expose the bug. After you have done this and confirmed that your PA1 implementation indeed fails
these tests, fix the bug. Discuss these tests in your overview document, and explain briefly what the
problem was.

CS4120/4121/5120/5121 Spring 2023 2/9 Programming Assignment 2

http://www.cs.cornell.edu/courses/cs4120/2023sp/hw/overview-requirements.html

4 Version control

As in the last assignment, you must submit file pa2.log that lists the commit history from your
group since your last submission.

5 Parser

The job of your parser is to parse an Eta source file. Note that Eta source file may be either a
program file (extension .eta) or an interface file (extension .eti). Your parser should require the
appropriate syntax for the kind of file it is parsing. It should output .parsed for both .eta and
.eti files. Hint: if your lexer provides the right input to the parser, you can get away with having
just one grammar for the whole language.

Your parser must be implemented using an LALR(1) parser generator, such as CUP for Java.
If you are using some language other than Java, consult the course staff for the appropriate parser
generator to use.

Your compiler should behave as follows:

• If there is a lexical or syntax error within the source, the compiler should indicate this by printing
to standard output (System.out) an error message that includes the position of the error.
• If the program is syntactically valid, the compiler should terminate normally (exit code 0) without

generating any standard output, unless certain options are specified on the command line. (See
Section 6 for details.)

5.1 Provided code

Code and libraries that might help with your implementation are provided in a released zip file.

• The CodeWriterSExpPrinter class supports pretty-printing of an S-expression. This output
will help you debug your parser.
• In addition, we are providing you with a stub CUP specification (eta.cup) from which to start.

5.2 A version of CUP that generates counterexamples

Debugging conflicts reported by a parser generator can be challenging, especially when the parser
generator only reports conflict items and lookahead symbol. In Spring 2016, the course staff

implemented an extended version of CUP1 that looks for counterexamples to better explain parsing
conflicts. Figure 1 shows an error message reported by our implementation for the dangling-else
shift/reduce conflict.

We are providing you with this extension of CUP (java_cup.jar in the released zip file)
to help you with diagnosing potential conflicts in your grammar. In a presence of conflicts,
counterexamples are constructed by default. To turn off counterexample generation, pass the flag
-noexamples. For the full list of options, invoke cup --help from your command line.

1See [Isradisaikul and Myers 2015] for more information.

CS4120/4121/5120/5121 Spring 2023 3/9 Programming Assignment 2

http://www2.cs.tum.edu/projects/cup/
http://www.cs.cornell.edu/courses/cs4120/2023sp/pa/pa2/pa2-release.zip
https://www.cs.cornell.edu/andru/papers/cupex/cupex.pdf

Warning : *** Shift/Reduce conflict found in state #8

between reduction on stmt ::= IF expr THEN stmt •

and shift on stmt ::= IF expr THEN stmt • ELSE stmt

under symbol ELSE

Ambiguity detected for nonterminal stmt

Example: IF expr THEN IF expr THEN stmt • ELSE stmt

Derivation using reduction:

stmt ::= [IF expr THEN stmt ::= [IF expr THEN stmt •] ELSE stmt]

Derivation using shift :

stmt ::= [IF expr THEN stmt ::= [IF expr THEN stmt • ELSE stmt]]

Figure 1: A sample error message reported by the CUP extension. The first four lines are in the standard
version of CUP.

If you are programming in Java, we strongly suggest you employ this version of CUP in your
project; it has been helpful to students in previous years. If you are programming in C or C++,
bison version 3.7 and later has a similar feature (added by a Cornell MEng student). In OCaml, the
Menhir parser generator also generates useful though less explanatory counterexamples.

5.3 A note on JFlex and CUP

The authors of JFlex have provided good support for interfacing with CUP. You can modify your
JFlex specification to generate a lexer that your CUP-generated parser is able to understand without
an adapter. This likely requires some minor changes, but the heart of your lexer will be the same.

6 Command-line interface

A command-line interface is the primary channel for users to interact with your compiler. As your
compiler matures, your command-line interface will support a growing number of possible options.

A general form for the command-line interface is as follows:

etac [options] <source files>

Unless noted below, the expected behaviors of previously available options are as defined in
the previous assignment. etac should support any reasonable combination of options. For this
assignment, the following options are possible:

• --help: Print a synopsis of options.
• --lex: Generate output from lexical analysis.

For each source file given as path/to/file.eta in the command line, an output file named
path/to/file.lexed is generated to provide the result of lexing the source file.
• --parse: Generate output from syntactic analysis.

For each source file given as path/to/file.eta in the command line, an output file named
path/to/file.parsed is generated to provide the result of parsing the source file.

CS4120/4121/5120/5121 Spring 2023 4/9 Programming Assignment 2

http://jflex.de/manual.html#CUPWork

If the source file is a syntactically invalid Eta program, the content of the .parsed file should
contain only the following line:

<line>:<column> error:<description>

where <line> and <column> indicate the beginning position of the error, and <description>
details the error.

If the source file is a syntactically valid Eta program, the content of the .parsed file should
contain an S-expression visualization of the AST representing the program.

Recall the syntax of symbolic expressions (S-expressions):

S ::= (L∗) | 〈x〉 | ε

In the grammar above, 〈x〉 is an atom and L is a list. For Eta, possible atoms are as follows:

– keywords, operators, and identifiers
– types int and bool
– integer and boolean literal constants
– character literal constants, enclosed in single quotes
– string literal constants, enclosed in double quotes

S-expression lists represent all other syntactic constructs. The general syntax is as follows:

program ::= ((use∗) (definition∗))
use ::= (use 〈id〉)

definition ::= method | globdecl
method ::= (〈id〉 (decl∗) (type∗) block)

globdecl ::= (:global 〈id〉 type) | (:global 〈id〉 type 〈value〉)
decl ::= (〈id〉 type)

block ::= (stmt∗)
op ::= (〈op〉 arg∗)

For Eta interface (eti) files, the syntax is very similar, with id, decl, type the same as above:

interface ::= ((method interface∗))
method interface ::= (〈id〉 (decl∗) (type∗))

Newline characters and additional spaces may be inserted between tokens for readability.
Table 1 shows a few examples of expected results.

• -sourcepath <path>: Specify where to find input source files.
If given, the compiler should find given input source files in the directory relative to this path.

The default is the current directory in which etac is run.

CS4120/4121/5120/5121 Spring 2023 5/9 Programming Assignment 2

Content of input file Content of output file
use io

main(args: int[][]) {

print("Hello, Worl\x{64}!\n")

c3po: int = ’x’ + 47;

r2d2: int = c3po // No Han Solo

}

(((use io))

((main ((args ([] ([] int)))) ()

((print "Hello, World!\n")

(= (c3po int) (+ ’x’ 47))

(= (r2d2 int) c3po)

)

)

)

)
foo(): bool, int {

expr: int = 1 - 2 * 3 * -4 *

5pred: bool = true & true | false;

if (expr <= 47) { }

else pred = !pred

if (pred) { expr = 59 }

return pred, expr;

}

bar() {

_, i: int = foo()

b: int[i][]

b[0] = {1, 0}

}

(()

((foo () (bool int)

((= (expr int)

(- 1 (* (* (* 2 3) (- 4))

5

)

)

)

(= (pred bool)

(| (& true true) false)

)

(if (<= expr 47)

()

(= pred (! pred))

)

(if pred ((= expr 59)))

(return pred expr)

)

)

(bar () ()

((= (_ (i int)) (foo))

(b ([] ([] int) i))

(= ([] b 0) (1 0))

)

)

)

)
+------------------------------------+

| What a beautiful, invalid program! |

+------------------------------------+

1:1 error:Unexpected token +

Table 1: Examples of running etac with --parse option

CS4120/4121/5120/5121 Spring 2023 6/9 Programming Assignment 2

For example, if this path is p and the given source file is a/r/se.eta, the compiler should
find this file at p/a/r/se.eta. When determining the output path for generated diagnostic files,
the value of -sourcepath should be ignored. For example, the parser diagnostic file for the
previous example should be placed at a/r/se.parsed.
• -D <path>: Specify where to place generated diagnostic files.

If given, the compiler should place generated diagnostic files, e.g., via --lex or --parse
option, in the directory relative to this path. The default is the current directory in which etac is
run.

For example, if this path is p and the file to be generated is a/r/se.lexed, the compiler
should place this file at p/a/r/se.lexed.

7 Build script

Your compiler implementation should provide a build script called etac-build in the compiler
path that can be run on the command-line interface. This script should compile your implementation
and produce files required to run etac properly. Your build script should terminate with exit code 0
if your implementation successfully compiles, or 1 otherwise.

Please refrain from downloading third-party libraries from the internet when building your
compiler. Either include these with your submission, or request an installation on the virtual
machine.

The test harness will assume the availability of your build script and fail grading if the build
script fails to build your compiler.

8 Test harness

eth (etac test harness) has been updated to contain test cases for this assignment and to support
testing syntactic analysis. To update eth, run the update script in the eth directory on the VM.

A general form for eth command-line interface is as follows:

eth [options] <test-script>

The following options are of particular interest:

• -compilerpath <path>: Specify where to find the compiler
• -testpath <path>: Specify where to find the test files
• -workpath <path>: Specify the working directory for the compiler

For the full list of currently available options, invoke eth.
An eth test script specifies a number of test cases to run. Directory eth/tests/pa2 contains a

sample test script (ethScript), along with several test cases. ethScript also lists the syntax of
an eth test script.
eth was used successfully in the last iteration of the course, but bugs are always possible. Please

report errors, request additional features, or give feedback on Ed.

CS4120/4121/5120/5121 Spring 2023 7/9 Programming Assignment 2

9 Autograder

There will be an autograder available on CMS for this programming assignment. The autograder
will check that your code compiles and passes the released test suite. Passing all the tests on the
autograder does not guarantee that you will receive a full score during final grading, because we
will be running additional correctness tests.

The first 10 submissions on CMS each day will automatically be run through the autograder.
Please ensure that you are grouped with your team members prior to submitting so that you will all
receive feedback from the autograder.

As a reminder, please ensure that your build process does not download anything from the
internet. After submitting on CMS, you should receive an email containing the results within 30
minutes. If you do not receive an email within this time, please double-check your spam folder
before making a private post on Ed.

10 Submission

Important: Your submission must work on a clean copy of the VM, without making global
environment changes.

You should submit these items on CMS:

• overview.txt/pdf: Your overview document for the assignment. This file should contain
your names, your NetIDs, all known issues you have with your implementation, and the names
of anyone you have discussed the homework with. It should also include descriptions of any
extensions you implemented.
• A zip file containing these items:

– Source code: You should include everything required to compile and run the project. We
require that etac and etac-build are at the root of the zip file.

If you use a lexer generator, please include the lexer input file, e.g., *.flex. Please include
your parser generator input file, e.g., *.cup.

Your etac-build should use these files to generate source code, and you should not
submit the corresponding generated source code files (e.g. *.java). Do not submit compiled
versions of your own code (submitting precompiled libraries is OK).

– Tests: You should include all your test cases and test code that you used to test your program.
Be sure to mention where these files are in your overview document. Do not submit instructor
tests or eth.

– Libraries: Your build process must not download anything from the internet. If your code
depends on any third-party libraries, they must be included in the submission.

Include precompiled libraries (e.g. JAR files) when feasible, especially for large libraries.
For smaller libraries, it often makes sense to include the source code directly, but be sure to
make clear what is library code, e.g. by package name.

Do not make global environment changes in your etac-build script.

Do not include any derived, IDE, or SCM-related files or directories such as .class, .jar
.classpath, .project, .git, and .gitignore, unless they are precompiled versions of

CS4120/4121/5120/5121 Spring 2023 8/9 Programming Assignment 2

libraries. Pay particular attention to the .git folder - this makes your submission needlessly
large.

It is strongly encouraged that you use the zip CLI tool on a *nix platform, such as the course
VM. Also, it is suggested that you write a small (shell) script to pack your submission zip file,
since you will be using it repeatedly throughout the course.

Your zip command should look something like:
zip -r submission.zip etac etac-build src tests ...

Do not use Archive Utility or Finder on macOS as they include extraneous dotfiles, and do not
use a Windows tool which does not maintain the executable bit of your etac and etac-build.

We reserve the right to deduct points for submissions not meeting these requirements.
• pa2.log: A dump of your commit log since your last submission from the version control system

of your choice.

CS4120/4121/5120/5121 Spring 2023 9/9 Programming Assignment 2

	Changes
	Instructions
	Grading
	Partners
	Package names
	Tips

	Design overview document
	Building on PA1
	Version control
	Parser
	Provided code
	A version of CUP that generates counterexamples
	A note on JFlex and CUP

	Command-line interface
	Build script
	Test harness
	Autograder
	Submission

