
CS4120/4121/5120/5121—Spring 2021
Programming Assignment 6

Optimization
Due: Friday, May 21, 9:00am

The goal of this assignment is to improve the quality of your code by implementing high-quality
register allocation and various optimizations in your compiler. In addition to code, your compiler
will generate CFG diagrams showing the effects of various optimizations. You will also submit test
programs that show off the effectiveness of your optimizer. Using various benchmark programs, we
will compare the performance of your compiler against the compilers produced by other groups,
and the compiler that has the most effective optimizations will earn a bonus.

0 Changes

• None yet; watch this space.

1 Instructions

1.1 Grading

Solutions will be graded on documentation and design, completeness of the implementation,
correctness, and style. 10% of the score is allocated to whether bugs in past assignments have been
fixed.

For this assignment, you may use no more than two slip days, so that the course staff has enough
time to grade your project.

1.2 Partners

You will work in a group of 3–4 students for this assignment. This should be the same group as in
the last assignment. If not, please discuss with the course staff.

Remember that the course staff is happy to help with problems you run into. For help, read all
Piazza posts and ask questions (that have not already been addressed), attend office hours, or meet
with any course staff member either at the prearranged office hour time or at a mutually satisfactory
time you arrange.

1.3 Package names

Please ensure that all Java code you submit is contained within a package (or similar, for other
languages) whose name contains the NetID of at least one of your group members. Subpackages
under this package are allowed; they can be named however you would like.

CS4120/4121/5120/5121 Spring 2021 1/7 Programming Assignment 6



1.4 Tips

Many of your optimizations will be performed at the IR level. The --irrun option, if implemented,
should be extremely useful for verifying the correctness your optimizations.

Register allocation will be harder than it looks because you’ll be doing it at the inherently more
complex abstract assembly level, whereas the other optimizations will be easier to do at the IR level.
Appel’s chapter on register allocation will be helpful in getting the details of register allocation
right, though you are not required to use exactly his algorithm.

2 Design overview document

We expect your group to submit an overview document. The Overview Document Specification
outlines our expectations.

3 Building on previous programming assignments

As before, you are building upon your work from Programming Assignment 5. The protocol is
the same as in prior assignments: you are required to develop and implement tests that expose any
problems with your implementation, and then fix the problems. Correctness of previous assignments
will count for more than it has earlier.

4 Version control

As in the last assignment, you must submit file pa6.log that lists the commit history from your
group since your last submission.

5 Required optimizations

For this assignment, there are two optimizations that you are required to implement:

• Register allocation (reg)
We expect you to implement register allocation with move coalescing. You must use a live
variable analysis, enabling reuse of the same register for multiple variables. You will need to
handle spilling. Move coalescing will make it easier to debug other optimizations because it
eliminates unnecessary temporaries.
• Common subexpression elimination (cse)

This is a global optimization, so it will require an available expressions analysis.

For each optimization, you should think carefully about what program representation it is best done
on. We suggest working through some example programs to convince yourself that you have the
right analysis and program transformations worked out before doing implementation.

CS4120/4121/5120/5121 Spring 2021 2/7 Programming Assignment 6

http://www.cs.cornell.edu/courses/cs4120/2021sp/hw/overview-requirements.html


6 Additional optimizations

You are also required to implement at least one of the following optimizations:

• Copy propagation along with dead code elimination
• Inlining function definitions
• Strength reduction with induction variables
• Loop unrolling
• Loop-invariant code motion
• Partial-redundancy elimination (this will also count for implementing CSE)
• Constant propagation along with value numbering
• A points-to analysis that makes other optimizations more effective (It may need to be context-

sensitive to be effective.)

If there is some other optimization you would like to do in lieu of the optimizations on this list,
consult the course staff.

7 Control-flow graphs

To be able to optimize code successfully, your compiler must be able to construct control-flow
graphs for IR, and it must be able to flatten CFGs back into inline code for code generation purposes.

The compiler must also be able to generate displayable versions of CFGs in dot format, allowing
easily visualization with Graphviz or other tools that accept this format. You will find this capability
useful for debugging your optimizations, so get it working early on!

8 Command-line interface

The command-line syntax is as follows:

xic [options] <source files>

Unless noted below, the expected behaviors of previously available options are as defined in
the previous assignment. xic should support any reasonable combination of options. For this
assignment, the following options are possible:

• --help: Print a synopsis of options.
• --report-opts: Output (only) a list of optimizations supported by the compiler, for example:

% xic --report-opts

reg

cse

copy

%

• --lex: Generate output from lexical analysis.

CS4120/4121/5120/5121 Spring 2021 3/7 Programming Assignment 6

http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/


• --parse: Generate output from syntactic analysis.
• --typecheck: Generate output from semantic analysis.
• --irgen: Generate output from intermediate code generation.

The IR is output after constant folding, if enabled, is complete.
• --irrun: Interpret generated intermediate code (optional).
• --optir <phase>: Report the intermediate code at the specified phase of optimization.

For each source file given as path/to/file.xi in the command line, an output file named
path/to/file <phase>.ir is generated to contain the intermediate representation of the source
file at the specified phase of optimization. At least the following phases must be supported:

– initial: before any optimizations are performed
– final: after all optimizations, if any, are complete

You may add additional phases if you wish, but you should document them. Specifying --optir
multiple times should generate an ir file for each phase.
• --optcfg <phase>: Report the control-flow graph at the specified phase of optimization.

For each source file given as path/to/file.xi in the command line, and for each definition
of function or procedure named f in the source file, an output file named

path/to/file f <phase>.dot

is generated to contain the control-flow graph for f in the dot format. The argument <phase>
works in the same way as for --optir. Specifying --optcfg multiple times should generate a
dot file for each phase.
• -sourcepath <path>: Specify where to find input source files.
• -libpath <path>: Specify where to find library interface files.
• -D <path>: Specify where to place generated diagnostic files.
• -d <path>: Specify where to place generated assembly output files.
• -target <OS>: Specify the operating system for which to generate code.
• -O<opt>: Enable optimization <opt>.

If one of these options is used, other optimizations are off by default unless otherwise
enabled. The following optimization names are standard, though your compiler probably will not
implement all or even most of them:

– cf: Constant folding
– reg: Register allocation
– mc: Move coalescing (and register allocation)
– cse: Common subexpression elimination
– alg: Algebraic optimizations (identities and reassociation)
– copy: Copy propagation
– dce: Dead code elimination
– inl: Inlining
– sr: Strength reduction
– lu: Loop unrolling
– licm: Loop-invariant code motion

CS4120/4121/5120/5121 Spring 2021 4/7 Programming Assignment 6



– pre: Partial redundancy elimination
– cp: Constant propagation
– vn: Local value numbering

• -O: Disable all optimizations.

9 Build script

Your build script xic-build from previous programming assignments should remain available.
The expected behaviors of the build script are as defined in the previous assignment. The build
script must be in the root directory of your submission zip file. Problems within the build script
from previous submissions should be fixed.

10 Benchmark test cases

Each group must submit at least 3 benchmark test cases for each optimization you implement.
Each benchmark should conform to the standard specifications and speed up the program (it may
help to write tests that repeatedly execute optimizable operations).

Each benchmark will be a valid Xi source file. A compiler c passes a test t if and only if

• c successfully compiles t into an assembly file a,
• assembling and linking a against the standard Xi library results in a runnable program o, and
• when executed, o terminates with a exit code 0 within 3 seconds, i.e., it terminates normally, and

not as a result of assertion failing or an array out-of-bounds violation.

All test cases must

• be ASCII-encoded files,
• be valid Xi programs, according to the standard specifications (i.e., the Xi language specification

and Xi type system specification),
• use only standard io and conv interfaces,
• not read input,
• contain at most 20 lines of code, excluding comments, and
• contain no line longer than 80 characters.

These test cases will also be run against the compilers of other groups, and groups will receive
good karma for generating the fastest code for submitted test cases, or for submitting test cases that
expose bugs in other compilers. You are welcome to develop more than 3 benchmarks for each
optimization, but please choose your best 3 for the purposes of running against other compilers. All
test cases submitted will be released after the assignment’s due date.

We suggest you aim for benchmarks that take between 1 and 3 seconds unoptimized. Very
short time intervals are hard to measure reliably; and long-running benchmarks will make your
performance testing runs too time-consuming. Where possible, your benchmarks should also
produce verifiable results, and ideally, self-verify.

CS4120/4121/5120/5121 Spring 2021 5/7 Programming Assignment 6

http://www.cs.cornell.edu/courses/cs4120/2021sp/project/language.pdf
http://www.cs.cornell.edu/courses/cs4120/2021sp/project/types.pdf


11 Submission

You should submit these items on CMS:

• overview.txt/pdf: Your overview document for the assignment. This file should contain
your names, your NetIDs, all known issues you have with your implementation, and the names
of anyone you have discussed the homework with. It should also include descriptions of any
extensions you implemented.
• A zip file containing these items:

– Source code: You should include everything required to compile and run the project. We
require that xic and xic-build are at the root of the zip file.
If you use a lexer generator, please include the lexer input file, e.g., *.flex. Please include
your parser generator input file, e.g., *.cup.
Your xic-build should use these files to generate source code, and you should not submit the
corresponding generated source code files (e.g. *.java). Do not submit compiled versions of
your own code (submitting precompiled libraries is OK).

– Tests: You should include all your test cases and test code that you used to test your program.
Be sure to mention where these files are in your overview document. Do not submit instructor
tests or xth.

– Libraries: Your build process must not download anything from the internet. If your code
depends on any third-party libraries, they must be included in the submission.
Include precompiled libraries (e.g. JAR files) when feasible, especially for large libraries. For
smaller libraries, it often makes sense to include the source code directly, but be sure to make
clear what is library code, e.g. by package name.
Do not make global environment changes in your xic-build script.

– Benchmark test cases: Three benchmark test cases per optimization to be run against other
compilers. These test cases must reside in directory benchmarks at the root of the zip
file directory hierarchy.

Do not include any derived, IDE, or SCM-related files or directories such as .class, .jar
.classpath, .project, .git, and .gitignore, unless they are precompiled versions of third
party libraries.
It is strongly encouraged that you use the zip CLI tool on a *nix platform, such as the course
VM. Do not use Archive Utility or Finder on macOS as they include extraneous dotfiles, and do
not use a Windows tool which does not maintain the executable bit of your xic and xic-build.
It is suggested that you write a small (shell) script to pack your submission zip file, since you will
be using it repeatedly throughout the course.
• pa6.log: A dump of your commit log since your last submission from the version control system

of your choice.

CS4120/4121/5120/5121 Spring 2021 6/7 Programming Assignment 6


	Changes
	Instructions
	Grading
	Partners
	Package names
	Tips

	Design overview document
	Building on previous programming assignments
	Version control
	Required optimizations
	Additional optimizations
	Control-flow graphs
	Command-line interface
	Build script
	Benchmark test cases
	Submission

