
CS412 Programming Assignment 2 Due: Tuesday, 28 February 2006

Assignment Description

In this programming assignment, you will implement the syntax and semantic analysis phases
for IC, including the AST construction and the symbol tables. The latest version of the IC
language specification can be found on the course web site. We expect you to build upon
the code that you wrote for Programming Assignment 1. You are required to implement the
following:

• The parser. To generate the parser, you will use Java CUP, an LALR(1) automatic
parser generator for Java. A link to Java CUP is available on the course web site.
While parsing, your compiler will build the AST and the symbol tables.

You will use the grammar from the IC language specification as a starting point for
you CUP parser specification. You must modify this grammar to make it LALR(1)
and get no conflicts when you run it through Java CUP. The operator precedence and
associativity must be as indicated in the IC specification. You are allowed to use Java
CUP precedence and associativity declarations.

For details about the integration of your parser with the lexer generated in the pre-
vious assignment, read Section 2.2.8 (Java CUP Compatibility) of the JFlex docu-
mentation, and Section 5 (Scanner Interface) of the Java CUP documentation. You
must replace the sym.java file in the lexer module with the sym.java automati-
cally generated by Java CUP. Also, you must either replace the Token class with
java cup.runtime.Symbol, or make Token a subclass of java cup.runtime.Symbol.

In addition to parsing the program file, you must also read and parse the library
signature file libic.sig. The syntax of this file is much simpler. We recommend that
you get started by writing this simpler parser first.

• AST construction. Design a class hierarchy for the abstract syntax tree (AST)
nodes for the IC language. When the input program is syntactically correct, your
checker will produce a corresponding AST for the program. The abstract syntax tree
is the interface between the syntax and semantic analysis, so designing it carefully is
important for the subsequent stages in the compiler. Note that your AST classes do
not necessarily correspond to the non-terminals of the IC grammar. Use the grammar
from the language specification only as a guideline for designing the AST. Once you
designed the AST class hierarchy, extend your parser such that it also constructs the
AST.

• Symbol Tables and Types. Then design the symbol table structures and the hier-
archy of program types. Your design should allow each AST node to access the symbol
table corresponding to its current scope (e.g. class, method, or block scope), and each

1

entry in the symbol table should have information about the type of the identifier
stored in that entry.

Your constructed symbol tables should be available to all remaining phases of the
compiler. We recommend that all subsequent compilation phases refer to program
symbols (e.g., variables, methods, etc) using references to their symbol table entries,
not using their names.

• Semantic checks. After you have constructed the AST and the symbol tables, your
compiler will analyze the program and perform semantic checks. These semantic checks
include type-checking, scope rules, and all of the other requirements described in the
language specification.

• Error Handling. Whenever syntax or semantic errors are encountered, the program
must terminate immediately, and print an succinct, but informative message describing
the problem. Syntax errors must clearly indicate the line number and token where they
occur. Type and semantic errors must indicate at least the class and method where
they occur. One should be able to fix the problem immediately after reading the error
message.

Command line invocation. Your compiler will be invoked with the program file name
as an argument. Optionally, one can also specify the location of the library signature file
libic.sig:

java IC.Compiler <file.ic> [-L </path/to/libic.sig>]

The compiler will parse the input file and the signature file, construct the AST and symbol
tables, will perform the semantic checks, and will report any error it encounters. In addition,
your compiler must support two command-line options to print internal information about
the AST and the symbol tables:

1. The ”-print-ast” option: will print at System.out a textual description of the con-
structed AST;

2. The ”-print-symtab” option: will print a textual description of the symbol tables.

You may find it helpful to use the graph visualization tool graphviz for printing out in-
formation about the AST and the hierarchy of symbol tables. You can find a web link to
this tool on the course web site. As part of that package, you will find the dot program,
which reads a textual specification for a graph and outputs a graphical image (in PostScript
format, jpg, or other image formats). For instance, the dot specification for the AST of the
statement x = y + 1 is:

digraph G {

Assign -> {"Id x", Plus}

Plus -> {"Id y", "Num 1"}

}

2

However, it is not part of the requirement to use such a description. You can use your own
textual description of the AST and symbol table structures. In that case, make sure your
output provides enough information and is easy to read.

Package Structure: You will implement the new components of the compiler as sub-
packages of the IC package. You will have a sub-package for each of the following: 1) the
parser module; 2) the AST class hierarchy; 3) the symbol tables; and 4) the representation
of types.

1 What to turn in

Turn in your code electronically using the Course Management System (CMS) on the due
date. You must submit your source code as pa2.zip using CMS, before 11pm on the due
date. Please include only the source files and your test cases in your submission. For this
assignment, we also expect a checkpoint submission halfway through the assignment – see
details below.

Turn in electronically:

• All of your source code and test cases (in directories /src and /test). As in the pre-
vious assignment, make sure your code is well-documented. We will generate javadoc
documentation and browse through your comments.

• A brief, clear, and concise document describing the your code structure and testing
strategy. Place this document in /writeup. Include in this document a description of
your AST and symbol table hierarchies, and a list of all the semantic checks that your
compiler performs (other than type-checking). Also describe how you broke up the
assignment between group members, and describe the interfaces that you have used
between the smaller pieces that different members have been working on.

Checkpoint submission:

This assignment requires significantly more work than the first. To encourage you to
start working on the project early, there will be a checkpoint submission halfway through
the assignment. You have to submit the current state of your work as a file checkpt.zip by
February 17, using CMS.

If you get your final assignment working in the end, we will disregard the checkpoint
submission. However, if you are not able to successfully complete the assignment, then
the checkpoint submission will be an indicator for how early you started working on the
assignment: if we determine that you left most of the work for the last minute, then you will
be penalized more severely.

3

