Loop Invariant Code

- **Idea**: if a computation produces same result in all loop iterations, move it out of the loop
- **Example**: for (i=0; i<10; i++)
 \[a[i] = 10*i + x*x; \]
- **Expression** \(x*x \) produces the same result in each iteration; move it of the loop:
 \[t = x*x; \]
 for (i=0; i<10; i++)
 \[a[i] = 10*i + t; \]

Loop Invariant Computation

- An instruction \(a = b \ OP \ c \) is loop-invariant if each operand is:
 - Constant, or
 - Has all definitions outside the loop, or
 - Has exactly one definition, and that is a loop-invariant computation
- Reaching definitions analysis computes all the definitions of \(x \) and \(y \) which may reach \(t = x \ OP \ y \)

Code Motion

- Suppose \(a = b \ OP \ c \) is loop-invariant
- We want to hoist it out of the loop
- Code motion of a definition \(d; a = b \ OP \ c \) in pre-header is valid if:
 1. Definition \(d \) dominates the nodes after the loop exit where \(a \) is live
 2. There is no other definition of \(a \) in loop
 3. All uses of \(a \) in the loop can only be reached from \(d \)
 otherwise, just move the computation \(b \ OP \ c \)

Other Issues

- Preserve dependencies between loop-invariant instructions
 when hoisting code out of the loop
 for (i=0; i<N; i++)
 \[
 \begin{align*}
 x &= y*z; \\
 t &= x*x;
 \end{align*}
 \]
 \[a[i] = 10*i + x*x; \]
 for (i=0; i<N; i++)
 \[a[i] = 10*i + t; \]
- Nested loops: apply loop invariant code motion algorithm multiple times
 for (i=0; i<N; i++)
 \[
 \begin{align*}
 t1 &= x*x; \\
 t2 &= t1 + 10*i; \\
 a[i][j] &= x*x + 10*i + 100*j;
 \end{align*}
 \]
 for (j=0; j<M; j++)
 \[a[i][j] = t2 + 100*j; \]

Induction Variables

- An induction variable is a variable in a loop, whose value is linear with respect to the loop iteration number
 \[v = f(i) \]
 \[f(i) = c*i + d \]
- Observation: linear combinations of linear functions are linear functions
 - Consequence: linear combinations of induction variables are induction variables
Induction Variables
- Two categories of induction variables
- Basic induction variables: only incremented in loop body
 \[i = i + c \]
 where \(c \) is a constant (positive or negative)
- Derived induction variables: expressed as a linear function of an induction variable
 \[k = c^j + d \]
 where:
 - either \(j \) is basic induction variable
 - or \(j \) is derived induction variable relative to \(i \) and:
 1. No definition of \(j \) outside the loop reaches definition of \(k \)
 2. \(k \) is not defined between the definitions of \(j \) and \(k \)

Families of Induction Variables
- Each basic induction variable defines a family of induction variables
 - Each variable in the family of \(i \) is a linear function of \(i \)
- A variable \(k \) is in the family of basic variable \(i \) if:
 1. \(k = i \) (the basic variable itself)
 2. \(k \) is a linear function of other variables in the family of \(i \):
 \[k = c^j + d \]
 where \(j \) is a family
- A triple \(<i, a, b> \) denotes an induction variable \(k \) in the family of \(i \) such that:
 - Triple for basic variable \(i \) is \(<i, 1, 0> \)

Dataflow Analysis Formulation
- Detection of induction variables: can formulate problem using the dataflow analysis framework
 - Analyze loop body sub-graph, except the back edge
 - Analysis is similar to constant folding
- Dataflow information: a function \(F \) that assigns a triple to each variable:
 \[F(k) = <i, a, b> \]
 if \(k \) is an induction variable in family of \(i \)
 \[F(k) = \bot \] : \(k \) is not an induction variable
 \[F(k) = \top \] : don't know if \(k \) is an induction variable

Dataflow Analysis Formulation
- Meet operation: if \(F_1 \) and \(F_2 \) are two functions, then:
 \[(F_1 \cap F_2)(v) = \begin{cases} <i, a, b> & \text{if } F_1(v) = <i, a, b> \text{ and } F_2(v) = <i, a, b> \\ \bot, & \text{otherwise} \end{cases} \]
 (in other words, use a flat lattice)
- Initialization:
 - Detect all basic induction variables
 - At loop header: \(F(i) = <i, 1, 0> \) for each basic variable \(i \)
- Transfer function:
 - consider \(F \) is information before node \(n \)
 - Compute information \(F \) after \(n \)

Dataflow Analysis Formulation
- For a definition \(k = j + c \), where \(k \) is not basic induction variable
 \[F(v) = <i, a, b + c>, \text{ if } v = k \text{ and } F(j) = <i, a, b> \]
 \[F(v) = F(v), \text{ otherwise} \]
- For a definition \(k = j + c \), where \(k \) is not basic induction variable
 \[F(v) = <i, a + c, b + c>, \text{ if } v = k \text{ and } F(j) = <i, a, b> \]
 \[F(v) = F(v), \text{ otherwise} \]
- For any other instruction and any variable \(k \) in \(\text{def}(n) \):
 \[F(v) = \bot, \text{ if } F(v) = <k, a, b> \]
 \[F(v) = F(v), \text{ otherwise} \]

Strength Reduction
- Basic idea: replace expensive operations (multiplications) with cheaper ones (additions) in definitions of induction variables
 \[s = 3i + 1 \]
 while \(i < 10 \) {
 \(j = -1 \)
 while \(j < 10 \) {
 \(\text{a[j]} = \text{a[j]} - 2; \)
 \(i = i + 1; \)
 }
 \(s = s + 6; \)
 }
- Benefit: cheaper to compute \(s = s + 6 \) than \(j = 3i \)
 - \(s = s + 6 \) requires an addition
 - \(j = 3i \) requires a multiplication
General Algorithm

- **Algorithm:**
 For each induction variable j with triple $<i,a,b>$ whose definition involves multiplication:
 1. create a new variable s
 2. replace definition of j with $j=s$
 3. immediately after $i=i+c$, insert $s = s+a*c$
 (here $a*c$ is constant)
 4. insert $s = a^n+b$ into preheader
- **Correctness:**
 this transformation maintains the invariant that $s = a^n+b$

Strength Reduction

- Gives opportunities for copy propagation, dead code elimination

$$s = 3^n+1;$$
$$\text{while } (i<10) \{$$
 $$j = j;$$
 $$a[j] = a[j] - 2;$$
 $$i = i+2;$$
 $$s = s+6;$$
$$\}$$

$$s = 3^n+1;$$
$$\text{while } (i<10) \{$$
 $$a[i] = a[i] - 2;$$
 $$i = i+2;$$
 $$s = s+6;$$
$$\}$$

Induction Variable Elimination

- **Idea:** eliminate each basic induction variable whose only uses are in loop test conditions and in their own definitions $i = i+c$
 - rewrite loop test to eliminate induction variable

$$s = 3^n+1;$$
$$\text{while } (i<10) \{$$
 $$a[i] = a[i] - 2;$$
 $$i = i+2;$$
 $$s = s+6;$$
$$\}$$

- When are induction variables used only in loop tests?
 - Usually, after strength reduction
 - Use algorithm from strength reduction even if definitions of induction variables don’t involve multiplications

Where We Are

- Defined dataflow analysis framework
- Used it for several analyses
 - Live variables
 - Available expressions
 - Reaching definitions
 - Constant folding
- Loop transformations
 - Loop invariant code motion
 - Induction variables
- Next:
 - Pointer alias analysis
Pointer Alias Analysis

- Most languages use variables containing addresses
 - E.g. pointers (C, C++, Java), call-by-reference parameters (Pascal, C++, Fortran)
- **Pointer aliases**: multiple names for the same memory location, which occur when dereferencing variables that hold memory addresses
- **Problem**:
 - Don’t know what variables read and written by accesses via pointer aliases (e.g. *p=y, x=*p, p=f=y, x=p,f, etc.)
 - Need to know accessed variables to compute dataflow information after each instruction

Alias Analysis Problem

- **Goal**: for each variable v that may hold an address, compute the set Ptr(v) of possible targets of v
 - Ptr(v) is a set of variables (or objects)
 - Ptr(v) includes stack- and heap-allocated variables (objects)
- Is a “may” analysis: if x ∈ Ptr(v), then v may hold the address of x in some execution of the program
- **No alias information**: for each variable v, Ptr(v) = V, where V is the set of all variables in the program

Dataflow Alias Analysis

- **Dataflow analysis**: for each variable v, compute points-to set Ptr(v) at each program point

 Dataflow information: set Ptr(v) for each variable v
 - Can be represented as a graph G ⊆ 2 x V
 - Nodes = V (program variables)
 - There is an edge v→u if u ∈ Ptr(v)

 \[
 \begin{align*}
 \text{Ptr}(x) &= \{y\} \\
 \text{Ptr}(y) &= \{x,t\}
 \end{align*}
 \]

 Example

 \[
 \begin{array}{c}
 z \\
 y \\
 x \\
 t
 \end{array}
 \]

Pointer Alias Analysis

- **Worst case scenarios**
 - *p = y* may write any memory location
 - x = *p may read any memory location
 - Such assumptions may affect the precision of other analyses
- **Example 1**: Live variables
 - before any instruction x = *p, all the variables may be live
- **Example 2**: Constant folding
 - a = 1; b = 2, *p = 0; c = a+b;
 - c = 3 at the end of code only if *p is not an alias for a or b!
 - **Conclusion**: precision of result for all other analyses depends on the amount of alias information available
 - hence, it is a fundamental analysis

Simple Alias Analyses

- **Address-taken analysis**:
 - Consider AT = set of variables whose addresses are taken
 - Then, Ptr(v) = AT, for each pointer variable v
 - Addresses of heap variables are always taken at allocation sites (e.g. x = new int[2], x = malloc(6))
 - Hence AT includes all heap variables
- **Type-based alias analysis**:
 - If v is a pointer (or reference) to type T, then Ptr(v) is the set of all variables of type T
 - Example: p.f and q.f can be aliases only if p and q are references to objects of the same type
 - Works only for strongly-typed languages

Dataflow Alias Analysis

- **Dataflow Lattice**: \((2^{x+y}, \supseteq)
 - V x V is set of all possible points-to relations
 - “may” analysis: top element is \(\emptyset\), meet operation is \(\cup\)
- **Transfer functions**: use standard dataflow transfer functions:
 - out[I] = \((\{I\} \cap \text{kill[I]}) \cup \text{gen[I]}\)
 - \(p = \text{addr q}\) \(\quad \text{kill[I]} = \{p\} \times V \quad \text{gen[I]} = \{(p,q)\}\)
 - \(p = q\) \(\quad \text{kill[I]} = \{p\} \times V \quad \text{gen[I]} = \{p\} \times \text{Ptr}(q)\)
 - \(p = q\) \(\quad \text{kill[I]} = \{p\} \times V \quad \text{gen[I]} = \{p\} \times \text{Ptr}(q)\)
 - For all other instruction, \(\text{kill[I]} = \emptyset\), \(\text{gen[I]} = \emptyset\)
- **Transfer functions**: are monotonic, but not distributive!
Alias Analysis Example

Program

\[
\begin{align*}
 &x = \&a; \\
 &y = \&b; \\
 &c = \&i; \\
 &\text{if}(i) \ x = y; \\
 &*x = c
\end{align*}
\]

\[
\begin{align*}
 &x = \&a \\
 &y = \&b \\
 &c = \&i \\
 &\text{if}(i) \\
 &x = y \\
 &*x = c
\end{align*}
\]

CFG

Points-to Graph (at the end of program)

\[
\begin{align*}
 &x \rightarrow a \\
 &y \rightarrow b \\
 &c \rightarrow i
\end{align*}
\]

Alias Analysis Uses

- Once alias information is available, use it in other dataflow analyses.

- Example: Live variable analysis

 Use alias information to compute \(\text{use}[I] \) and \(\text{def}[I] \) for load and store statements:

 \[
 \begin{align*}
 x = \ast y & \quad \text{use}[n] = \{ y \} \cup \text{Pr}(y) \quad \text{def}[n] = \{ x \} \\
 *x = y & \quad \text{use}[n] = \{ x, y \} \quad \text{def}[n] = \text{Pr}(x)
 \end{align*}
 \]