Problem 4: Constant Folding

• Compute constant variables at each program point
• Constant variable := variable having a constant value on all program executions
• Dataflow information: sets of constant values
• Example: \(x = 2 \), \(y = 3 \) at program point \(p \)
• Is a forward analysis
• Let \(V \) := set of all variables in the program
• Let \(N \) := set of integer numbers
• The lattice is a map from \(V \) to \(N \)
• Construct the lattice starting from a lattice for \(N \)

Constant Folding Lattice

- **Second try:** lattice \((N \cup \{\top, \bot\}, \leq) \)
 - Where \(\bot \leq m \), for all \(m \in N \)
 - And \(m \leq \top \), for all \(m \in N \)
 - Is complete!
 - **Meaning:**
 - \(v = \top \): don’t know if \(v \) is constant
 - \(v = \bot \): \(v \) is not constant
 - **Problem:**
 - Is incorrect for constant folding
 - Meet of two constants \(c \land d \) is \(\min(c, d) \)
 - Meet of different constants should be \(\bot \)
 - **Another problem:** has infinite height

Constant Folding Lattice

- **Solution:** flat lattice \(L = (N \cup \{\top, \bot\}, \sqsubseteq) \)
 - Where \(\bot \sqsubseteq m \), for all \(m \in N \)
 - And \(m \sqsubseteq \top \), for all \(m \in N \)
 - And distinct integer constants are not comparable

Note: meet of any two distinct numbers is \(\bot \)

CF: Transfer Functions

- Transfer function for node \(n \):
 \[F_n(X) = (X - \text{kill}[n]) \cup \text{gen}[n] \]
- Dataflow information \(X \) is a map from \(V \) to \(N \cup \{\top, \bot\} \)
 - Represent it as a set of pairs \((vax \mapsto a) \)
 - Denote by \(X[vax] = a \) the value of var in this mapping

- If \(n \) is \(v = c \) (constant):
 - \(\text{gen}[n] = (v \mapsto c) \cap \text{kill}[n] = (v \mapsto \bot) \)
- If \(n \) is \(v = u \lor v \):
 - \(\text{gen}[n] = (v \mapsto u) \cap \text{kill}[n] = (v \mapsto \bot) \)
where \(e = x[a] + x[b] \), if \(x[a] \) and \(x[b] \) are not \(T, \bot \)
- \(e = \bot \), if \(x[a] = \bot \) or \(x[b] = \bot \)
- \(e = T \), if \(x[a] = T \) or \(x[b] = T \)
CF: Transfer Functions

- Transfer function for node n:
 \[F_n(X) = (X - \text{kill}[n]) \cup \text{gen}[n] \]
- Here gen[n] is not constant, it depends on X
- Exercise: prove that transfer functions are monotonic
- However, transfer functions are not distributive

CF: Distributivity

- Example:
 \[
 \begin{align*}
 x &= 2 \\
 y &= 3 \\
 z &= x + y
 \end{align*}
 \]
- MFP and MOP yield different solutions

Classification of Analyses

- Forward analyses: information flows from
 - CFG entry block to CFG exit block
 - Input of each block to its output
 - Output of each block to input of its successor blocks
 - Examples: available expressions, reaching definitions, constant folding
- Backward analyses: information flows from
 - CFG exit block to entry block
 - Output of each block to its input
 - Input of each block to output of its predecessor blocks
 - Example: live variable analysis

Another Classification

- "may" analyses:
 - Information describes a property that \textit{MAY} hold in \textit{SOME}
 executions of the program
 - Usually: \(\cap = \cup \), \(T = \emptyset \)
 - Hence, initialize info to empty sets
 - Examples: live variable analysis, reaching definitions
- "must" analyses:
 - Information describes a property that \textit{MUST} hold in \textit{ALL}
 executions of the program
 - Usually: \(\cap = \cap \), \(T = S \)
 - Hence, initialize info to the whole set
 - Examples: available expressions

Next

- Control flow analysis
 - Detect loops in control flow graphs
 - Dominators
- Loop optimizations
 - Code motion
 - Strength reduction for induction variables
 - Induction variable elimination

Program Loops

- Loop = a computation repeatedly executed until a terminating condition is reached
- High-level loop constructs:
 - While loop: \textbf{while}(E) S
 - Do-while loop: \textbf{do} S \textbf{while}(E)
 - For loop: \textbf{for}(i=1, i<\text{n}, i+=c) S
- Why are loops important:
 - Most of the execution time is spent in loops
 - Typically: 90/10 rule, 10% code is a loop
- Therefore, loops are important targets of optimizations
Detecting Loops

- Need to identify loops in the program
 - Easy to detect loops in high-level constructs
 - Difficult to detect loops in low-level code

- Examples:
 - Languages with unstructured "goto" constructs: structure of high-level loop constructs may be destroyed
 - Optimizing Java bytecodes (without high-level source program): only low-level code is available

Control-Flow Analysis

- Goal: identify loops in the control flow graph

- A loop in the CFG:
 - Is a set of CFG nodes (basic blocks)
 - Has a loop header such that control to all nodes in the loop always goes through the header
 - Has a back edge from one of its nodes to the header

Dominators

- Use concept of dominators to identify loops:
 "CFG node d dominates CFG node n if all the paths from entry node to n go through d"

 1 dominates 2, 3, 4
 2 doesn’t dominate 4
 3 doesn’t dominate 4

- Intuition:
 - Header of a loop dominates all nodes in loop body
 - Back edges = edges whose heads dominate their tails
 - Loop identification = back edge identification

Immediate Dominators

- Properties:
 1. CFG entry node \(n_e \) dominates all CFG nodes
 2. If \(d_1 \) and \(d_2 \) dominate \(n \), then either
 - \(d_1 \) dominates \(d_2 \) or
 - \(d_2 \) dominates \(d_1 \)

- Immediate dominator \(\text{idom}(n) \) of node \(n \):
 - \(\text{idom}(n) \neq n \)
 - \(\text{idom}(n) \) dominates \(n \)
 - If \(m \) dominates \(n \), then \(m \) dominates \(\text{idom}(n) \)

- Immediate dominator \(\text{idom}(n) \) exists and is unique because of properties 1 and 2

Dominator Tree

- Build a dominator tree as follows:
 - Root is CFG entry node \(n_e \)
 - \(m \) is child of node \(n \) iff \(n = \text{idom}(m) \)

- Example:

Computing Dominators

- Formulate problem as a system of constraints:
 - \(\text{dom}(n) \) is set of nodes that dominate \(n \)
 - \(\text{dom}(n) = \{ n_{o} \} \)
 - \(\text{dom}(n) = (\cap \{ \text{dom}(p) \mid p \in \text{pred}(n) \}) \cup \{ n \} \)

- Can also formulate problem in the dataflow framework
 - What is the dataflow information?
 - What is the lattice?
 - What are the transfer functions?
 - Use dataflow analysis to compute dominators
Natural Loops

- Back edge: edge n→h such that h dominates n
- Natural loop of a back edge n→h:
 - h is loop header
 - Loop nodes is set of all nodes that can reach n without going through h
- Algorithm to identify natural loops in CFG:
 - Compute dominator relation
 - Identify back edges
 - Compute the loop for each back edge

Disjoint and Nested Loops

- Property: for any two natural loops in the flow graph, one of the following is true:
 1. They are disjoint
 2. They are nested
 3. They have the same header
- Eliminate alternative 3: if two loops have the same header and none is nested in the other, combine all nodes into a single loop

Loop Preheader

- Several optimizations add code before header
- Insert a new basic block (called preheader) in the CFG to hold this code

Loop Optimizations

- Now we know the loops in the program
- Next: optimize loops
 - Loop invariant code motion
 - Strength reduction of induction variables
 - Induction variable elimination

Loop Invariant Code

- Idea: if a computation produces same result in all loop iterations, move it out of the loop
- Example: for (i=0; i<10; i++)
 a[i] = 10*i + x*x;
- Expression x*x produces the same result in each iteration; move it of the loop:
 \[t = x^2; \]
 for (i=0; i<10; i++)
 a[i] = 10*i + t;

Loop Invariant Computation

- An instruction \(a = b \text{ OP } c \) is loop-invariant if each operand is:
 - Constant, or
 - Has all definitions outside the loop, or
 - Has exactly one definition, and that is a loop-invariant computation
- Reaching definitions analysis computes all the definitions of x and y which may reach \(t = x \text{ OP } y \)
Algorithm

INV = ∅
Repeat
 for each instruction \notin INV
 if operands are constants, or
 have definitions outside the loop, or
 have exactly one definition $d \in$ INV
 then
 INV = INV ∪ {i}
 Until no changes in INV

Other Issues

- Preserve dependencies between loop-invariant instructions when
 hoisting code out of the loop
 for (i=0; i<n; i++) {
 $x = yz$
 $t = xs$
 $a[i] = 10*i + xs$
 for (i=0; i<n; i++)
 $a[i] = 10*i + t$
 }
- Nested loops: apply loop invariant code motion algorithm multiple
 times
 $t1 = xs$
 for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 $a[i][j] = xs * 10 + t1 * 100 + j$
 $a[i][j] = t2 * 100 + j$