CS412/413
Introduction to Compilers
Radu Rugina

Lecture 17: IR Lowering
01 Mar 06

IR Lowering

- Use temporary variables for the translation
- Temporary variables in the Low IR store intermediate values corresponding to the nodes in the High IR

```
High IR
MUL
SUB
ADD
a
b
lowering
c
d
t1 = a - b
t2 = c + d
t = t1 * t2
```

Lowering Methodology

- Define simple translation rules for each High IR node
 - Arithmetic: e1 + e2, e1 - e2, etc.
 - Logic: e1 AND e2, e1 OR e2, etc.
 - Array access expressions: el[e2]
 - Statements: if (a) then s1 else s2, while (e) s, etc.
 - Function calls f(e1, ..., eN)

- Recursively traverse the High IR trees and apply the translation rules
- Can handle nested expressions and statements

Notation

- Use the following notation:
 - $T[e]$ is the low-level IR representation of high-level IR construct e
 - $T[e]$ is a sequence of Low-level IR instructions
 - If e is an expression (or a statement expression), it represents a value
 - Denote by $t := T[e]$ the low-level IR representation of e, whose result value is stored in t
 - For variable v: $t := T[v]$ is the copy instruction $t = v$

Nested Expressions

- In these translations, expressions may be nested;
- Translation recurses on the expression structure

```
Example: $t := T[ (a - b) * (c + d) ]$

\[
\begin{align*}
    t1 &= a \\
    t2 &= b \\
    t3 &= t1 - t2 \\
    t4 &= b \\
    t5 &= c \\
    t6 &= t4 + t5 \\
    t &= t3 * t5
\end{align*}
\]
```

Nested Statements

- Same for statements: recursive translation

```
Example: $T[ if c then if d then a = b ]$

\[
\begin{align*}
    t1 &= c \\
    fjump t1 Lend1 \\
    t2 &= d \\
    fjump t2 Lend2 \\
    t3 &= b \\
    a &= t3 \\
    label Lend2 \\
    label Lend1
\end{align*}
\]
IR Lowering

\[
\begin{align*}
\text{if-then} & \quad c \\
\text{if-then} & \quad d \\
& \quad a \quad b
\end{align*}
\]

- \( t_1 = c \)
- \( \text{fjump } t_1 \text{ Lend1} \)
- \( t_2 = d \)
- \( \text{fjump } t_2 \text{ Lend2} \)
- \( t_3 = b \)
- \( \text{a = t3} \)
- \( \text{label Lend2} \)
- \( \text{label Lend1} \)

IR Lowering Techniques

1. Reduce number of temporaries
   1. Don’t use temporaries that duplicate variables
   2. Use “accumulator” temporaries
   3. Reuse temporaries in Low IR

2. Don’t generate multiple adjacent label instructions

3. Encode conditional expressions in control flow

No Duplicated Variables

- Basic algorithm:
  - Translation rules \( t \ := \ T[e] \) recursively traverse expressions until they reach terminals (variables and numbers)
  - Then translate \( t \ := \ T[v] \) into \( t = v \) for variables
  - And translate \( t \ := \ T[n] \) into \( t = n \) for constants

- Better:
  - terminate recursion one level before terminals
  - Need to check at each step if expressions are terminals
  - Recursively generate code for children only if they are non-terminal expressions

No Duplicated Variables

- \( t \ := T[e1 \ \text{OP} \ e2] \)
  - \( t_1 \ := T[e1], \text{if } e_1 \text{ is not terminal} \)
  - \( t_2 \ := T[e2], \text{if } e_2 \text{ is not terminal} \)
  - \( t = x_1 \ \text{OP} \ x_2 \)

  where:
  - \( x_1 = t_1, \text{if } e_1 \text{ is not terminal} \)
  - \( x_1 = e_1, \text{otherwise} \)
  - \( x_2 = t_2, \text{if } e_2 \text{ is not terminal} \)
  - \( x_2 = e_2, \text{otherwise} \)

- Similar translation for statements with conditional expressions: if, while, switch

Accumulator Temporaries

- Use the same temporary variables for operands and result

- Translate \( t \ := T[e1 \ \text{OP} \ e2] \) as:
  - \( t := T[e1] \)
  - \( t_1 := T[e2] \)
  - \( t = t \ \text{OP} \ t_1 \)

- Example: \( t = T[(a+b)*c] \)
  - \( t = a + b \)
  - \( t = t + c \)

Reuse Temporaries

- Idea: in the translation of \( t := T[e1 \ \text{OP} \ e2] \) as:
  - \( t = T[e1], t_1 = T[e2], t = t \ \text{OP} \ t_1 \)
  - temporary variables from the translation of \( e_1 \) can be reused in the translation of \( e_2 \)

- Temporary variables compute intermediate values, so they have limited lifetime

- Algorithm:
  - Use a stack of temporaries
  - This corresponds to the stack of the recursive invocations of the translation functions \( t := T[a] \)
  - All the temporaries on the stack are alive
Reuse Temporaries

- Implementation: use counter i to implement the stack
  - Temporaries s(0), s(i) are alive
  - Temporaries s(i-1), s(i+1), ... can be reused
  - Push means increment i, pop means decrement i
- In the translation of \( t(i) = T( s(i-1), s(i), s(i+1) ) \)
  \[
  t(i) = T( s(i-1), s(i), s(i+1) ) =
  \begin{align*}
  \text{if } s(i) > 0 & \quad \text{then} \\
  & \quad \text{push } s(i) \\
  \end{align*}
  \]

Example

- \( t0 = T( (c+d) - (e+f) + (a*b) ) \)
  \[
  \begin{align*}
  t0 &= c+d \\
  t1 &= e+f \\
  t2 &= a*b \\
  t3 &= t0 - t1 \\
  \end{align*}
  \]

Trade-offs

- Benefits of fewer temporaries:
  - Smaller symbol tables
  - Less information propagated during dataflow analysis
- Drawbacks:
  - Same temporaries store multiple values
  - Some analysis results may be less precise
  - Also harder to reconstruct expression trees (more convenient for instruction selection)
- Possible compromise:
  - Different temporaries for intermediate values in each statement
  - Reuse temporaries for different statements

No Adjacent Labels

- Translation of control flow constructs (if, while, switch) and short-circuit conditionals generates label instructions
- Nested if, while, switch statements and nested short-circuit AND/OR expressions may generate adjacent labels
- Simple solution: have a second pass that merges adjacent labels
  - And a third pass to adjust the branch instructions
- More efficient: backpatching
  - Directly generate code without adjacent label instructions
  - Code has placeholders for jump labels, fill in labels later

Backpatching

- Keep track of the return label (if any) of translation of each IR node: \( t, L := T( e ) \)
- No end label for a translation: \( L = \emptyset \)
- Translate \( t, L := T( e1 \text{ SC-OR } e2 ) \) as:
  \[
  t, L1 := T( e1 ) \\
  t, L2 := T( e2 ) \\
  \]
  - If \( L1 = \emptyset \) then \( L \) is new label: add ‘label \( L \)’ to code
  - If \( L1 \neq \emptyset \) and \( L2 = L \), don’t add label instruction
  - Fill placeholder \( L \) in jump instruction and return \( L \)

Encode Booleans in Control-Flow

- Consider \( T( \text{if } ( a < b \text{ AND } c < d ) \text{ condition } x = y; ) \)
  \[
  t = a < b \\
  \text{jump } t, L1 \\
  t = c < d \\
  \text{label } L1 \\
  \text{jump } t, L2 \\
  x = y \\
  \text{label } L2 \\
  \]
  - Control flow: if \( ( t ) \text{ condition } x = y \)
  - ... can we do better?
Encode Booleans in Control-Flow

- Consider $T \{ \text{ if ( a \land b \land c \land d ) x = y; } \}$

  $t = a \land b$
  $t = a \land b$
  $fjump \ t \ L1$
  $fjump \ t \ L2$
  $t = c \land d$
  $fjump \ t \ L2$
  $x = y$
  $label \ L2$

  Condition and control flow

  - If $t = a \land b$ is false, program branches to label L2
  - Encode $(a \land b) \Rightarrow \text{false}$ to branch directly to the end label

How It Works

- For each boolean expression $e$:
  $T \{ e, L1, L2 \}$
  is the code that computes $e$ and branches to $L1$ if $e$ evaluates to true, and to $L2$ if $e$ evaluates to false

  - New translation: $T \{ \text{ if(e) then } \ s \}$
    $T \{ e, L1, L2 \}$
    $label \ L1$
    $T \{ \ s \}$
    $label \ L2$

    - Also remove sequences 'jump L, label L'

Define New Translations

- Must define:
  $T \{ \ s \}$ for if, while statements
  $T \{ e, L1, L2 \}$ for boolean expressions $e$

  - $T \{ \text{ if(e) then } s1 \text{ else } s2 \}$
    $T \{ e, L1, L2 \}$
    $label \ L1$
    $T \{ s1 \}$
    $jump \ Lend$
    $label \ L2$
    $T \{ s2 \}$
    $label \ Lend$

While Statement

- $T \{ \text{ while (e) } s \}$
  $label \ Ltest$
  $T \{ e, L1, L2 \}$
  $label \ L1$
  $T \{ \ s \}$
  $jump \ Ltest$
  $label \ L2$

  - Code branches directly to end label when $e$ evaluates to false

Boolean Expression Translations

- $T \{ \text{ true, L1, L2 } \}$: jump L1
- $T \{ \text{ false, L1, L2 } \}$: jump L2

- $T \{ e1 \text{ OR } e2, L1, L2 \}$
  $T \{ e1, L1, Lnext \}$
  $label \ Lnext$
  $T \{ e2, L1, L2 \}$

- $T \{ e1 \text{ AND } e2, L1, L2 \}$
  $T \{ e1, Lnext, L2 \}$
  $label \ Lnext$
  $T \{ e2, L1, L2 \}$