CS412/413

Introduction to Compilers
Radu Rugina

Lecture 12: Types
17 Feb 06

Types

* Today’s topics
— Type errors
— Type system concepts
— Types constructors
— Type-checking

€S 412/413 Spring 2006 Introduction to Compilers 2

What Are Types?

e Types = describe the values computed during the
execution of the program

Essentially, types are predicate on values
— E.g. “int x” in Java means “x [J [-23!, 231)"
— Think: “type = set of possible values”

e Type errors: improper, type-inconsistent operations
during program execution

* Type-safety: absence of type errors

CS 412/413 Spring 2006 Introduction to Compilers 3

How to Ensure Type-Safety

¢ Bind (assign) types, then check types

¢ Type binding: defines type of constructs in the program
(e.g. variables, functions)

— Can be either explicit (int x) or implicit (x = 1)

— Type consistency (safety) = correctness with respect to the type
bindings

¢ Type checking: determine if the program correctly uses the

type bindings

— Consists of a set of type-checking rules

CS 412/413 Spring 2006 Introduction to Compilers 4

Type Checking

* Type checking = semantic checks to enforce the
type safety of the program

e Examples:

— Unary and binary operators (e.g. +, ==, []) must
receive operands of the proper type

— Functions must be invoked with the right number and
type of arguments

— Return statements must agree with the return type
— Class members accessed appropriately

€S 412/413 Spring 2006 Introduction to Compilers 5

Static vs. Dynamic Typing

* Static and dynamic typing refer to type definitions
(i.e. bindings of types to variables, expressions, etc.)

e Statically typed language: types are defined and
checked at compile-time and do not change during
the execution of the program

— E.g. C, ML, Java, Pascal, Modula-3
e Dynamically typed language: types defined and
checked at run-time, during program execution

— E.g. Lisp, Smalltalk

€S 412/413 Spring 2006 Introduction to Compilers 6

Strong vs. Weak Typing

* Refers to how much type consistency is enforced

 Strongly typed languages: guarantees that all
accepted programs are type-safe

Weakly typed languages: allow programs which
contain type errors

* Can achieve strong typing using either static or
dynamic typing

€S 412/413 Spring 2006 Introduction to Compilers 7

Soundness

e Sound type systems: all programs that satisfy the
typing rules are free of type errors
— i.e., if program type-checks, then there are no type errors

Static type safety requires a conservative

approximation of the values that may occur during

all possible executions

— May reject type-safe programs

— Need to be expressive: reject as few type-safe programs as
possible

€S 412/413 Spring 2006 Introduction to Compilers 8

Concept Summary

* Static vs. dynamic typing: when to define/check types?
* Strong vs. weak typing: how many type errors?

* Sound type systems: statically catch all type errors

CS 412/413 Spring 2006 Introduction to Compilers 9

Classification

Strong Typing Weak Typing

ML Pascal C
Static Typing
Java Modula-3 C++
Scheme
. . PostScript
Dynamic Typing ostScrip assembly code
Smalltalk
CS 412/413 Spring 2006 Introduction to Compilers 10

Why Static Checking?

« Efficient code
— Dynamic checks slow down the program

* Guarantees that all executions will be safe
— Dynamic checking gives safety guarantees only for some

execution of the program

* But is conservative (at least for sound systems)
— Needs to be expressive: reject few type-safe programs

€S 412/413 Spring 2006 Introduction to Compilers 1

Type Systems
e Type is predicate on value

e Type expressions: describe the possible types in the
program: int, string, array[], Object, etc.

e Type system: defines types for language constructs
(e.g. expressions, statements)

€S 412/413 Spring 2006 Introduction to Compilers 12

Type Expressions

* Languages have basic types (a.k.a. primitive types,
or ground types)
— E.g., int, char, boolean

* Build type expressions using basic types:
— Type constructors
— Type aliases

€S 412/413 Spring 2006 Introduction to Compilers 13

Array Types

e Type array(T) = type of arrays with elements of type T’
— C, Java: int[], Modula-3: array of integer

o array(T, S) : array with size
— C: int[10], Modula-3: array[10] of integer

— Indexed from 0 to size-1

* array(T, L, U) : array with upper/lower bounds
— Ada: array (2..5) of integer

e array(T, S,, ..., S,) : multi-dimensional arrays
— FORTRAN: real(3,5)

€S 412/413 Spring 2006 Introduction to Compilers 14

Record Types

* Avrecord is {id,: T, ..., id,T,} for some
identifiers id; and types 7

» Supports access operations on each field, with
corresponding type

o C: struct { int a; float b; }
e Pascal: record a: integer; b: real; end

* Objects: generalize the notion of records

CS 412/413 Spring 2006 Introduction to Compilers 15

Type Aliases

* Some languages allow type aliases (a.k.a. type
definitions, equates)
- C: typedef int int_arrayl[];
— Modula-3: type int_array = array of int;
— Java doesn’t have type aliases

* Aliases are not type constructors!

— int_array is the same type as int[]

 Different type expressions denote the same type

CS 412/413 Spring 2006 Introduction to Compilers 16

Pointer Types

¢ Pointer types characterize values that are addresses of
variables of other types

e Pointer(T) : pointer to an object of type T'
e C pointers: T'* (e.g. int *x;)

* Pascal pointers: " T (e.g. x: “integer;)
» Java: object and array references (everything is a pointer)

€S 412/413 Spring 2006 Introduction to Compilers 17

Function Types

o Type: TXIx...XT, - T,
e Function value can be invoked with some argument
expressions with types T, returns return type 7T,

i

e C functions : int pow(int x, int y)
— Type int x int - int

* Java: methods have function types

* Some languages have first-class functions
— usually in functional languages, e.g., ML, Lisp
— C/CH+ have function pointers
— Java doesn't

€S 412/413 Spring 2006 Introduction to Compilers 18

Implementation

¢ Use a class hierarchy for types:

abstract class Type { ... }

class IntType extends Type { ... }

class BoolType extends Type { ... }

class ArrayType extends Type {
Type elemType; ...

}

class FunctionType extends Type {
Type[] paramTypes;
Type returnType; ...

}

class ClassType extends Type {
ClassSymbol sym;

}

€S 412/413 Spring 2006 Introduction to Compilers 19

Type Comparison

e Option 1: use a unique object for each distinct type

— each type expression (e.g. arraylint]) resolved to same
type object everywhere

— Use reference equality (==) for comparison

e Option 1: implement a method t1.equals(t2)
— Must compare type trees of t1 and t2

e For object-oriented languages, also need sub-typing:
t1.subtype0f (t2)

€S 412/413 Spring 2006 Introduction to Compilers 20

Creating Type Objects

e Build types while parsing — use a syntax-directed definition:

non terminal Type type
type ::= BOOLEAN
{: RESULT = Type.bool; :}

| ARRAY LBRACKET type:t RBRACKET
{: RESULT = Type.arrayType(t); :}

* Type objects = AST nodes for type expressions

CS 412/413 Spring 2006 Introduction to Compilers 21

Type-Checking (1)
e Type-checking = verify typing rules

“operands of + must be integer expressions; the result is an integer
expression”

* Option 1: Implement using syntax-directed definitions (type-
check during the parsing)

expr ::= expr:tl PLUS expr:t2
{: if (t1 == Type.integer && t2 == Type.integer)
RESULT = Type.integer;
else throw new TypeCheckError (“+");

CS 412/413 Spring 2006 Introduction to Compilers 22

Type-Checking (2)

e Option 2: first build the AST, then implement type-checking
by recursive traversal of the AST nodes:

class AddExpr extends Expr {

Type typeCheck() {
if (el.typeCheck() == Type.integer &&
e2.typeCheck() == Type.integer)
return Type.integer;
else
throw new TypeCheckingError (this);

€S 412/413 Spring 2006 Introduction to Compilers 23

Type-Checking (2)
* |dentifier expressions: lookup the type in the symbol table

class IdExpr extends Expr {
Symbol id;

Type typeCheck()
{ return id.getType(); }

€S 412/413 Spring 2006 Introduction to Compilers 2

Possible Strategy Next Time: Static Semantics

¢ Separate AST construction from type checking phase
e Visitors = a methodology for designing passes over
 Traverse the AST and perform semantic checks (or other the AST
actions) only after the tree has been built and its
structure is stable
e Static semantics = mathematical description of

¢ This approach is less error-prone typing rules for the language
— It is better when efficiency is not a critical issue

* Static semantics formally defines types for all legal
language ASTs

€S 412/413 Spring 2006 Introduction to Compilers 25 €S 412/413 Spring 2006 Introduction to Compilers 26

