CS412/CS413
Introduction to Compilers
Radu Rugina

Lecture 5: Grammars
1 Feb 06

Outline

• Context-Free Grammars (CFGs)
• Derivations
• Parse trees and abstract syntax
• Ambiguous grammars

Where we Are

Source code (character stream) if (b == 0) a = b;

Token stream

if (b == 0) a = b;

Abstract syntax tree (AST)

Lexical Analysis

Syntax Analysis (Parsing)

Semantic Analysis

Syntax Analysis Example

Source code (token stream)

if (b == 0) a = b;
while (a != -1) {
 stdio.print(a);
 a = a - 1;
}

Abstract Syntax Tree

Parsing Analogy

• Natural languages: recognize whether a sentence is grammatically well-formed and identify the function of each component.

"I gave him the book"

sentence

subject: I

verb: gave

indirect object: him

object

noun phrase

article: the

noun: book

Syntax Analysis Overview

• Goal: check that the input token stream satisfies the syntactic structure of the language

• What we need:
 – An expressive way to describe the syntax
 – An mechanism that:
 • Checks if the input token stream has correct syntax
 • And determines what the syntactic structure is
Why Not Regular Expressions?

- Regular expressions can expressively describe tokens
 - easy to implement, efficient (using DFAs)
- Why not use regular expressions (on tokens) to specify programming language syntax?
- Reason: they don't have enough power to express the syntax in programming languages
- Typical constructs: nested expressions, nested statements
 - Similar to the language of balanced parentheses
 - \(()^+ \cup ((()^+))^+ \) ...
 - needs unbounded counting

Context-Free Grammars

- A Context-Free Grammar is a tuple \((V, \Sigma, S, \rightarrow)\)
 - \(V \) is a finite set of nonterminal symbols
 - \(\Sigma \) is a finite set of terminal symbols
 - \(S \in V \) is a distinguished nonterminal, the start symbol
 - \(\rightarrow \subseteq V \times (V \cup \Sigma)^* \) is a finite relation, the productions
- Context Free Grammar is abbreviated CFG
 - Note: CFG also stands for "control flow graph"

Typographical Conventions

- \(A, B, C, \ldots \) are nonterminals
- \(a, b, c, \ldots \) are terminals
- \(\ldots, x, y, z \) are strings of terminals
- \(\alpha, \beta, \gamma, \delta, \ldots \) are strings of terminals or nonterminals
- \(A \rightarrow \alpha \) denotes production \((A, \alpha)\)
- In production \(A \rightarrow \alpha \)
 - \(A \) is the left-hand side (LHS)
 - \(\alpha \) is the right-hand side (RHS)
- \(A \rightarrow \alpha_1 \ldots \alpha_n \) denotes \(n \) productions \(A \rightarrow \alpha_1, \ldots, A \rightarrow \alpha_n \)

Sample Grammar

- \((V, \Sigma, S, \rightarrow)\), where
 - \(V \) is \(\{ S \} \), i.e., there is one nonterminal \(S \)
 - \(\Sigma \) is \(\{ a, b \} \), i.e., there are two terminals "a" and "b"
 - \(\rightarrow \) is defined by two productions \(S \rightarrow aSbS \) and \(S \rightarrow \varepsilon \)
- What language does this grammar describe?

Direct Derivations

- Let \(G = (V, \Sigma, S, \rightarrow) \) be a CFG.
 The "directly derives" relation is defined by:
 \(\alpha \gamma \Rightarrow \alpha \beta \gamma \) if \(A \rightarrow \beta \)
- Examples
 - Let \(G \) be the grammar with productions \(S \rightarrow aSbS \mid \varepsilon \)
 - Then
 - \(aSbS \Rightarrow a \varepsilon bS \)
 - \(aSbS \Rightarrow abS \)

Context Free Languages

- The language generated by grammar \(G \) is:
 \(L(G) = \{ x \mid S \Rightarrow^* x \} \)
- \(L(G) \) is the set of strings of terminals derived from \(S \) by repeatedly applying the productions as rewrite rules
 - Context Free Languages (CFLs) are the languages generated by context-free grammars
- If \(x \in L(G) \), then a derivation of \(x \) is a sequence of strings \(\alpha_0, \alpha_1, \ldots, \alpha_i \) such that \(\alpha_0 = S, \alpha_i = x, \alpha_i \Rightarrow \alpha_{i+1} \) for \(i=0..n-1 \). We write \(S \Rightarrow \alpha_1 \ldots \Rightarrow \alpha_n \Rightarrow x \)
Every Regular Language is a CFL

- Inductively build a CFG for each RE
 - $\varepsilon \rightarrow \varepsilon$
 - $a \rightarrow a$
 - $R_1, R_2 \rightarrow S_1, S_2$
 - $R_1 \mid R_2 \rightarrow S_1 \mid S_2$
 - $R_1^* \rightarrow S \rightarrow S_1 \mid S_2 \mid \epsilon$

where:
- G_1 = grammar for R_1, with start symbol S_1
- G_2 = grammar for R_2, with start symbol S_2

Grammars and Acceptors

- Acceptors for context-free grammars
 - Context-Free
 - Grammar $G \rightarrow$ Acceptor \rightarrow
 - Yes, if $x \in L(G)$
 - No, if $x \notin L(G)$

- Syntax analyzers (parsers) = CFG acceptors. They also output the corresponding derivation when the token stream is accepted
 - Various kinds: LL(k), LR(k), SLR, LALR

Another Example: Sum Grammar

- Grammar:
 - $S \rightarrow E + S \mid E$
 - $E \rightarrow \text{num} \mid (S)$

- Expanded:
 - $S \rightarrow E + S$
 - $S \rightarrow E$
 - $E \rightarrow \text{num}$
 - $E \rightarrow (S)$
 - 4 productions
 - $V = \{ S, E \}$
 - $\Sigma = \{ +, \cdot, \text{num} \}$
 - start symbol S

Example accepted input:
- $(1+2+(3+4))+5$

Derivation Example

Derive $(1+2+(3+4))+5$

- $S \rightarrow E + S \mid E$
- $E \rightarrow \text{num} \mid (S)$

Derivation:
- $S \Rightarrow E + S \Rightarrow E + S + S \Rightarrow E + (S + S) \Rightarrow E + ((3 + 4) + 5) \Rightarrow \boxed{E + (3 + 4) + 5}$

Derivations and Parse Trees

- The Parse Tree is a tree representation of the derivation
- Leaves = terminals
- Internal nodes = nonterminals
- No information about order of derivation steps

Parse Tree vs. AST

- Parse tree also called "concrete syntax"

Parse Tree (Concrete Syntax)

Discards (abstracts) unneeded information
Derivation Order

- Can choose to apply productions in any order; select any nonterminal \(A \) such that \(\alpha \gamma \Rightarrow \alpha \beta \gamma \)
- Two standard orders: leftmost and rightmost -- useful for different kinds of automatic parsing
- **Leftmost derivation**: Always replace leftmost nonterminal \(E + S \Rightarrow 1 + S \)
- **Rightmost derivation**: Always replace rightmost nonterminal \(E + S \Rightarrow E + E + S \)

Example

- \(S \Rightarrow E + S | E \)

- **Leftmost derivation**

 \[
 S \Rightarrow E + S \Rightarrow (E + S) \Rightarrow (1 + S) \Rightarrow (1 + S) + S \Rightarrow \]

 \[
 (1 + S) + S \Rightarrow \]

- **Right-most derivation**

 \[
 S \Rightarrow E + S \Rightarrow E + S \Rightarrow \]

- **Same parse tree**: same productions chosen, different order

Parse Trees

- In example grammar, leftmost and rightmost derivations produced identical parse trees
- \(+ \) operator associates to right in parse tree regardless of derivation order

\[
\begin{align*}
(1 + 2 + (3 + 4)) + 5 & \quad \Rightarrow \\
1 + 2 + (3 + 4) + 5 & \quad \Rightarrow
\end{align*}
\]

An Ambiguous Grammar

- \(+ \) associates to right because of right-recursive production \(S \Rightarrow E + S \)
- Consider another grammar:

 \[
 S \Rightarrow S + S \mid S * S \mid \text{num}
 \]
- **Ambiguous grammar**: a string in the language has multiple parse trees

Different Parse Trees

\[
S \Rightarrow S + S \mid S * S \mid \text{num}
\]

- Consider expression \(1 + 2 * 3 \)
- Derivation 1: \(S \Rightarrow S + S \Rightarrow 1 + S \Rightarrow 1 + S + S \Rightarrow 1 + 2 * S \Rightarrow 1 + 2 * S \Rightarrow 1 + 2 * S \)
- Derivation 2: \(S \Rightarrow S * S \Rightarrow S * S \Rightarrow 1 + S * S \Rightarrow 1 + 2 * S \Rightarrow 1 + 2 * S \)

These derivations correspond to different parse trees!
- Hence, the grammar is ambiguous