CS412/413

Introduction to
Compilers and Translators

Lecture 1: Overview
23 Jan 06

Outline

* Course Organization
— General course information

—Homework & project information

* Introduction to Compilers
— What are compilers?
—Why do we need compilers?
— General compiler structure

€S 412/413 Spring 2006 Introduction to Compilers

General Information

Important

* CS 413 is required !
* Large implementation project

* Substantial amount of theory

CS 412/413 Spring 2006 Introduction to Compilers

When MWEF 10:10 - 11:00AM

Where HO 110

Instructor Radu Rugina

Teaching Assistant Maksim Orlovich

Course staff email cs412-10cs. cornell.edu

Web page courses.cs.cornell.edu/cs412

Newsgroup cornell.class.412

CS 412/413 Spring 2006 Introduction to Compilers 3
Textbooks

* Optional texts
— Compilers -- Principles, Techniques and Tools
(Dragon Book), by Aho, Sethi and Ullman (1986)

— Modern Compiler Implementation in Java
by Andrew Appel (2002)

— Engineering a Compiler
by Linda Torczon and Keith Cooper (2003)

* They are on reserve in Engineering Library

€S 412/413 Spring 2006 Introduction to Compilers 5

Work Distribution

* Theory:
— Homeworks = 20%
* 4 homeworks: 5% each
— Exams = 35%
« 2 prelims: 17% and 18%; no final exam
* Prelims on: March 9, April 27 (evening)

* Practice:

— Programming Assignments = 45%
* 6 assignments: 5/9/9/9/9
* Project demo

€S 412/413 Spring 2006 Introduction to Compilers

Homeworks

* 4 homework assignments

— Three assignments in first half of course
— One homework in second half

Not done in groups

—do your own work

€S 412/413 Spring 2006 Introduction to Compilers

Project

* Build a full compiler:
— Compile a subset of Java
— Generate assembly x86
— Implementation in Java 1.5

* 5 programming assignments
* Groups of 3-4 students

— Usually same grade for all

— Form your group in CMS!

€S 412/413 Spring 2006 Introduction to Compilers

Assignments

* Due at beginning of class

— Homeworks: paper turn in (at beginning of class)
— Project files: electronic turn in (day before class)
— Assignments managed with CMS

* Late homeworks, project submissions
— Avoid late submissions

— Late submission penalty: 10% per day

CS 412/413 Spring 2006 Introduction to Compilers

Why Take This Course?

» CS412/413 is an elective course

Reason #1: understand compilers/languages
— Understand the code structure
— Understand the language semantics

— Understand the relation between source code
and generated machine code

— Become a better programmer

CS 412/413 Spring 2006 Introduction to Compilers

Why Take This Course? (ctd.)

* Reason #2: nice balance of theory and practice:
— Theory:
* Many mathematical models: regular expressions,
automata, grammars, graphs, lattices
« Lots of algorithms that use these models
— Practice:
 Apply theory to build a real compiler

* Better understand why “theory and practice are the
same in theory, but in practice they are different”

€S 412/413 Spring 2006 Introduction to Compilers

Why Take This Course? (ctd.)
Reason #3: Programming experience
— Write a large program that manipulates
complex data structures
— Software development in groups

— Learn more about Java and Intel x86
architecture and assembly language

€S 412/413 Spring 2006 Introduction to Compilers

What Are Compilers?

* Compilers = translate information from one
representation into another

* Usually information = program

* Typically:

— Compilers refer to the translation from high-level
source code to low-level code (e.g. object code)

— Translators refer to the transformation at the same
level of abstraction

€S 412/413 Spring 2006 Introduction to Compilers 13

Examples

* Typical compilers: gec, javac

* Non-typical compilers:
— latex (document compiler) :
« Transforms a LaTeX document into DVI printing commands
— C-to-Hardware compiler:
« Generates hardware circuits for C programs
* Translators:
— f2c : Fortran-to-C translator (high-level)
— latex2html : LaTeX-to-HTML (documents)
— dvi2ps: DVI-to-PostScript (low-level)

€S 412/413 Spring 2006 Introduction to Compilers 14

Related Paradigms

Interpretation
— Interpreter executes source program
— You've seen them in CS211, CS312

* Compilation for a Virtual Machine
— E.g., Java bytecode compilation
— Portable compilation

+ JIT (Just-in-Time) Compilation
— Dynamic compilation

CS 412/413 Spring 2006 Introduction to Compilers 15

In This Class

* We will study typical compilation:
— from programs written in high-level languages
— to low-level machine-specific assembly code

CS 412/413 Spring 2006 Introduction to Compilers 16

Why Do We Need Compilers?

It is difficult to write, debug, maintain, and understand
programs written in assembly language

Tremendous increase in productivity when first compilers
appeared (0050 years ago)

e There are still a few cases when people manually write
assembly code
— E.g. to access low-level machine resources such as device drivers

— These code fragments are very small; the compiler handles the rest of
the code in the application

€S 412/413 Spring 2006 Introduction to Compilers 17

Overall Compiler Structure

‘ High-level source code ‘

Low-level machine code

€S 412/413 Spring 2006 Introduction to Compilers 18

Source Code

* Optimized for human readability
— Matches human notions of grammar
— Uses named constructs such as variables and
procedures

int expr(int n)

{
int d;
d=4*nx*xnx (@+1) x (n+1);
return d;

}

€S 412/413 Spring 2006 Introduction to Compilers 19

Assembly and Machine Code

* Optimized for hardware

— Consists of machine instructions; uses registers
and unnamed memory locations

— Much harder to understand by humans

1da $30,-32($30) addq $3,1,$4
atq $26,0(330) mili $2,84,82
stq $15,8($30) 1dl $3,16($15)
bid $30,850.815 addg 83,1
N 281 mull $2,
tl $1,16($15) stl $2,20($15)
,16(815) 1d1 $0,20($15)
$£124(818) br 8318
,24($15) $33
bis 185,92 bis $15,$15,$30
addy $270,$3 1dq $26,0($30)
16(s15) lag $15/6($30)
mull $4,$3,$2 addq _$30,32,$30
1d1 83, 16(415) Tot 831, (828) 1
€S 412/413 Spring 2006 Introduction to Compilers 20

Translation Efficiency

Goal: generate machine code that describes the same
computation as the source code

Is there a unique translation?

Is there an algorithm for an “ideal translation”? (ideal
= either fastest or smallest generated code)

Compiler optimizations = find better translations!

CS 412/413 Spring 2006 Introduction to Compilers 2

Example: Output Assembly Code

Unoptimized Code Optimized Code

bis $16,516,51

bis §

2
N

CS 412/413 Spring 2006 Introduction to Compilers

Translation Correctness

* The generated code must execute precisely the
same computation as in the source code

 Correctness is very important!
— hard to debug programs with broken compiler...
— implications for development cost, security
— this course: techniques proved to ensure correct
translation

€S 412/413 Spring 2006 Introduction to Compilers 23

How To Translate?

* Translation is a complex process
— source language and generated code are very different

* Structure the translation
— Define intermediate steps
— At each step use a specific program representation

— More machine-specific, less language-specific as
translation proceeds

€S 412/413 Spring 2006 Introduction to Compilers 2

Simplified Compiler Structure

Source code —_—

if (b ==0) a =b; Understand
source code Front end
(machine-independent)
Intermediate code l
—f
Optimize Optimizer
Intermediate code
Generate B.ack end
Assembly code bl d (machine-dependent)
cmp $0,ecx assembly code

cmovz edx,ecx 4—‘

S S

€S 412/413 Spring 2006 Introduction to Compilers 25

Simplified Front-End Structure

Source code
(character stream)

Analogy

Front end can be explained by analogy to the
way humans understand natural languages

Lexical analysis

— Natural language: “He wrote the program”

words: “he” “wrote” “the” “program”

— Programming language “if (b == 0) a = b”

tokens: “if” (" b’ f==" Q" 9 gt s Y

CS 412/413 Spring 2006 Introduction to Compilers

Analogy (ctd)

* Semantic analysis
— Natural language:
He wrote the computer

noun verb article noun
Syntax is correct; semantics is wrong!

— Programming language
if (b == 0)

a = foo
test assignment
if a is an integer and foo is a method, the compiler will

complain.

. o Lexical
i — - b -
if (b==0) a = b; Lexical Analysis errors
Token stream
5 Syntax
-
Syntax Analysis errors
Abstract syntax tree
R S Semantic
Semantic Analysis| —— .
Abstract syntax tree
€S 412/413 Spring 2006 Introduction to Compilers 26
Analogy (ctd)
* Syntactic analysis
— Natural language:
He wrote the program
noun verb article noun
subject predicate object
sentence
— Programming language
if ==0) a=>b
K [V17
test assignment
. —
if-Staterent
€S 412/413 Spring 2006 Introduction to Compilers 28

€S 412/413 Spring 2006

Introduction to Compilers

29

Beyond Assembly Code

— Source code
Lexical Analysis
Syntax Analysis
Compiler | _Semantic Analysis

Optimization

Code Generation

Assembler

Assembly code

Object code
(machine code)

Fully-resolved object
code (machine code)

Executable image

€S 412/413 Spring 2006 Introduction to Compilers

30

Tentative Schedule

Lexical analysis

Syntax analysis
Semantic analysis
Prelim #1

Simple code generation
Analysis

Optimizations

Prelim #2

Advanced topics

€S 412/413 Spring 2006

3 lectures
6 lectures
5 lectures

6 lectures
8 lectures

3 lectures

6 lectures

Introduction to Compilers

31

