
1

CS412/413

Introduction to

Compilers and Translators

Lecture 1: Overview

23 Jan 06

CS 412/413 Spring 2006 Introduction to Compilers 2

Outline

• Course Organization

– General course information

– Homework & project information

• Introduction to Compilers

– What are compilers?

– Why do we need compilers?

– General compiler structure

CS 412/413 Spring 2006 Introduction to Compilers 3

General Information

courses.cs.cornell.edu/cs412Web page

Radu Rugina

Maksim Orlovich

Instructor

Teaching Assistant

cornell.class.412 Newsgroup

cs412-l@cs.cornell.eduCourse staff email

MWF 10:10 - 11:00AM

HO 110

When

Where

CS 412/413 Spring 2006 Introduction to Compilers 4

Important

• CS 413 is required !

• Large implementation project

• Substantial amount of theory

CS 412/413 Spring 2006 Introduction to Compilers 5

Textbooks

• Optional texts
– Compilers -- Principles, Techniques and Tools

(Dragon Book), by Aho, Sethi and Ullman (1986)

– Modern Compiler Implementation in Java

by Andrew Appel (2002)

– Engineering a Compiler

by Linda Torczon and Keith Cooper (2003)

• They are on reserve in Engineering Library

CS 412/413 Spring 2006 Introduction to Compilers 6

Work Distribution

• Theory:
– Homeworks = 20%

• 4 homeworks: 5% each

– Exams = 35%
• 2 prelims: 17% and 18%; no final exam

• Prelims on: March 9, April 27 (evening)

• Practice:
– Programming Assignments = 45%

• 6 assignments: 5/9/9/9/9

• Project demo

2

CS 412/413 Spring 2006 Introduction to Compilers 7

Homeworks

• 4 homework assignments

– Three assignments in first half of course

– One homework in second half

• Not done in groups

– do your own work

CS 412/413 Spring 2006 Introduction to Compilers 8

Project

• Build a full compiler:

– Compile a subset of Java

– Generate assembly x86

– Implementation in Java 1.5

• 5 programming assignments

• Groups of 3-4 students

– Usually same grade for all

– Form your group in CMS!

CS 412/413 Spring 2006 Introduction to Compilers 9

Assignments

• Due at beginning of class

– Homeworks: paper turn in (at beginning of class)

– Project files: electronic turn in (day before class)

– Assignments managed with CMS

• Late homeworks, project submissions

– Avoid late submissions

– Late submission penalty: 10% per day

CS 412/413 Spring 2006 Introduction to Compilers 10

Why Take This Course?

• CS412/413 is an elective course

• Reason #1: understand compilers/languages

– Understand the code structure

– Understand the language semantics

– Understand the relation between source code
and generated machine code

– Become a better programmer

CS 412/413 Spring 2006 Introduction to Compilers 11

Why Take This Course? (ctd.)

• Reason #2: nice balance of theory and practice:

– Theory:

• Many mathematical models: regular expressions,
automata, grammars, graphs, lattices

• Lots of algorithms that use these models

– Practice:

• Apply theory to build a real compiler

• Better understand why “theory and practice are the
same in theory, but in practice they are different”

CS 412/413 Spring 2006 Introduction to Compilers 12

Why Take This Course? (ctd.)

• Reason #3: Programming experience

– Write a large program that manipulates
complex data structures

– Software development in groups

– Learn more about Java and Intel x86
architecture and assembly language

3

CS 412/413 Spring 2006 Introduction to Compilers 13

What Are Compilers?

• Compilers = translate information from one
representation into another

• Usually information = program

• Typically:

– Compilers refer to the translation from high-level
source code to low-level code (e.g. object code)

– Translators refer to the transformation at the same
level of abstraction

CS 412/413 Spring 2006 Introduction to Compilers 14

Examples

• Typical compilers: gcc, javac

• Non-typical compilers:
– latex (document compiler) :

• Transforms a LaTeX document into DVI printing commands

– C-to-Hardware compiler:

• Generates hardware circuits for C programs

• Translators:
– f2c : Fortran-to-C translator (high-level)

– latex2html : LaTeX-to-HTML (documents)

– dvi2ps: DVI-to-PostScript (low-level)

CS 412/413 Spring 2006 Introduction to Compilers 15

Related Paradigms

• Interpretation

– Interpreter executes source program

– You’ve seen them in CS211, CS312

• Compilation for a Virtual Machine

– E.g., Java bytecode compilation

– Portable compilation

• JIT (Just-in-Time) Compilation

– Dynamic compilation

CS 412/413 Spring 2006 Introduction to Compilers 16

In This Class

• We will study typical compilation:

– from programs written in high-level languages

– to low-level machine-specific assembly code

CS 412/413 Spring 2006 Introduction to Compilers 17

Why Do We Need Compilers?

• It is difficult to write, debug, maintain, and understand
programs written in assembly language

• Tremendous increase in productivity when first compilers
appeared (≅ 50 years ago)

• There are still a few cases when people manually write
assembly code
– E.g. to access low-level machine resources such as device drivers

– These code fragments are very small; the compiler handles the rest of
the code in the application

CS 412/413 Spring 2006 Introduction to Compilers 18

Overall Compiler Structure

High-level source code

Compiler

Low-level machine code

4

CS 412/413 Spring 2006 Introduction to Compilers 19

Source Code

• Optimized for human readability

– Matches human notions of grammar

– Uses named constructs such as variables and
procedures

int expr(int n)

{

int d;

d = 4 * n * n * (n + 1) * (n + 1);

return d;

}

CS 412/413 Spring 2006 Introduction to Compilers 20

Assembly and Machine Code

• Optimized for hardware

– Consists of machine instructions; uses registers
and unnamed memory locations

– Much harder to understand by humans

lda $30,-32($30)
stq $26,0($30)
stq $15,8($30)
bis $30,$30,$15
bis $16,$16,$1
stl $1,16($15)
lds $f1,16($15)
sts $f1,24($15)
ldl $5,24($15)
bis $5,$5,$2
s4addq $2,0,$3
ldl $4,16($15)
mull $4,$3,$2
ldl $3,16($15)

addq $3,1,$4
mull $2,$4,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
stl $2,20($15)
ldl $0,20($15)
br $31,$33

$33:
bis $15,$15,$30
ldq $26,0($30)
ldq $15,8($30)
addq $30,32,$30
ret $31,($26),1

CS 412/413 Spring 2006 Introduction to Compilers 21

Translation Efficiency

• Goal: generate machine code that describes the same
computation as the source code

• Is there a unique translation?

• Is there an algorithm for an “ideal translation”? (ideal
= either fastest or smallest generated code)

• Compiler optimizations = find better translations!

CS 412/413 Spring 2006 Introduction to Compilers 22

Optimized CodeUnoptimized Code

Example: Output Assembly Code

lda $30,-32($30)
stq $26,0($30)
stq $15,8($30)
bis $30,$30,$15
bis $16,$16,$1
stl $1,16($15)
lds $f1,16($15)
sts $f1,24($15)
ldl $5,24($15)
bis $5,$5,$2
s4addq $2,0,$3
ldl $4,16($15)
mull $4,$3,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
stl $2,20($15)
ldl $0,20($15)
br $31,$33

$33:
bis $15,$15,$30
ldq $26,0($30)
ldq $15,8($30)
addq $30,32,$30
ret $31,($26),1

s4addq $16,0,$0

mull $16,$0,$0
addq $16,1,$16
mull $0,$16,$0
mull $0,$16,$0
ret $31,($26),1

CS 412/413 Spring 2006 Introduction to Compilers 23

Translation Correctness

• The generated code must execute precisely the
same computation as in the source code

• Correctness is very important!

– hard to debug programs with broken compiler…

– implications for development cost, security

– this course: techniques proved to ensure correct
translation

CS 412/413 Spring 2006 Introduction to Compilers 24

How To Translate?

• Translation is a complex process
– source language and generated code are very different

• Structure the translation
– Define intermediate steps

– At each step use a specific program representation

– More machine-specific, less language-specific as
translation proceeds

5

CS 412/413 Spring 2006 Introduction to Compilers 25

cmp $0,ecx

cmovz edx,ecx

Simplified Compiler Structure

Source code

Understand
source code

Generate
assembly code

Assembly code

Front end
(machine-independent)

Back end
(machine-dependent)

if (b == 0) a = b;

Optimize

Intermediate code

Intermediate code

Optimizer

CS 412/413 Spring 2006 Introduction to Compilers 26

Simplified Front-End Structure
Source code
(character stream)

Lexical Analysis

Syntax Analysis

Token stream

Abstract syntax tree

Semantic Analysis

if (b == 0) a = b;
Lexical
errors

Syntax
errors

Semantic
errors

Abstract syntax tree

CS 412/413 Spring 2006 Introduction to Compilers 27

Analogy

• Front end can be explained by analogy to the
way humans understand natural languages

• Lexical analysis

– Natural language: “He wrote the program”

words: “he” “wrote” “the” “program”

– Programming language “if (b == 0) a = b”

tokens: “if” “(” “b” “==” “0” “)” “a” “=” “b”

CS 412/413 Spring 2006 Introduction to Compilers 28

• Syntactic analysis
– Natural language:

He wrote the program

noun verb article noun

subject predicate object

sentence

– Programming language

if (b==0) a = b

test assignment

if-statement

Analogy (ctd)

CS 412/413 Spring 2006 Introduction to Compilers 29

Analogy (ctd)

• Semantic analysis
– Natural language:

He wrote the computer

noun verb article noun

Syntax is correct; semantics is wrong!

– Programming language

if (b == 0) a = foofoofoofoo

test assignment

if a is an integer and foo is a method, the compiler will
complain.

CS 412/413 Spring 2006 Introduction to Compilers 30

Beyond Assembly Code
Source code

Assembly code

Assembler Object code
(machine code)

Fully-resolved object
code (machine code)

Executable image

Linker

Loader

Lexical Analysis
Syntax Analysis
Semantic Analysis

Code Generation

Optimization
Compiler

6

CS 412/413 Spring 2006 Introduction to Compilers 31

Tentative Schedule

Lexical analysis 3 lectures

Syntax analysis 6 lectures

Semantic analysis 5 lectures

Prelim #1

Simple code generation 6 lectures

Analysis 8 lectures

Optimizations 3 lectures

Prelim #2

Advanced topics 6 lectures

