CS412/413

Introduction to
Compilers and Translators

Lecture 1: Overview
23 Jan 06

Outline

* Course Organization
— General course information

—Homework & project information

* Introduction to Compilers
— What are compilers?
—Why do we need compilers?
— General compiler structure
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General Information

Important

* CS 413 is required !
* Large implementation project

* Substantial amount of theory
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When MWEF 10:10 - 11:00AM

Where HO 110

Instructor Radu Rugina

Teaching Assistant Maksim Orlovich

Course staff email cs412-10cs. cornell.edu

Web page courses.cs.cornell.edu/cs412

Newsgroup cornell.class.412
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Textbooks

* Optional texts
— Compilers -- Principles, Techniques and Tools
(Dragon Book), by Aho, Sethi and Ullman (1986)

— Modern Compiler Implementation in Java
by Andrew Appel (2002)

— Engineering a Compiler
by Linda Torczon and Keith Cooper (2003)

* They are on reserve in Engineering Library
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Work Distribution

* Theory:
— Homeworks = 20%
* 4 homeworks: 5% each
— Exams = 35%
« 2 prelims: 17% and 18%; no final exam
* Prelims on: March 9, April 27 (evening)

* Practice:

— Programming Assignments = 45%
* 6 assignments: 5/9/9/9/9
* Project demo
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Homeworks

* 4 homework assignments

— Three assignments in first half of course
— One homework in second half

Not done in groups

—do your own work
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Project

* Build a full compiler:
— Compile a subset of Java
— Generate assembly x86
— Implementation in Java 1.5

* 5 programming assignments
* Groups of 3-4 students

— Usually same grade for all

— Form your group in CMS!
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Assignments

* Due at beginning of class

— Homeworks: paper turn in (at beginning of class)
— Project files: electronic turn in (day before class)
— Assignments managed with CMS

* Late homeworks, project submissions
— Avoid late submissions

— Late submission penalty: 10% per day
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Why Take This Course?

» CS412/413 is an elective course

Reason #1: understand compilers/languages
— Understand the code structure
— Understand the language semantics

— Understand the relation between source code
and generated machine code

— Become a better programmer
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Why Take This Course? (ctd.)

* Reason #2: nice balance of theory and practice:
— Theory:
* Many mathematical models: regular expressions,
automata, grammars, graphs, lattices
« Lots of algorithms that use these models
— Practice:
 Apply theory to build a real compiler

* Better understand why “theory and practice are the
same in theory, but in practice they are different”
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Why Take This Course? (ctd.)
Reason #3: Programming experience
— Write a large program that manipulates
complex data structures
— Software development in groups

— Learn more about Java and Intel x86
architecture and assembly language
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What Are Compilers?

* Compilers = translate information from one
representation into another

* Usually information = program

* Typically:

— Compilers refer to the translation from high-level
source code to low-level code (e.g. object code)

— Translators refer to the transformation at the same
level of abstraction
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Examples

* Typical compilers: gec, javac

* Non-typical compilers:
— latex (document compiler) :
« Transforms a LaTeX document into DVI printing commands
— C-to-Hardware compiler:
« Generates hardware circuits for C programs
* Translators:
— f2c : Fortran-to-C translator (high-level)
— latex2html : LaTeX-to-HTML (documents)
— dvi2ps: DVI-to-PostScript (low-level)
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Related Paradigms

Interpretation
— Interpreter executes source program
— You've seen them in CS211, CS312

* Compilation for a Virtual Machine
— E.g., Java bytecode compilation
— Portable compilation

+ JIT (Just-in-Time) Compilation
— Dynamic compilation
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In This Class

* We will study typical compilation:
— from programs written in high-level languages
— to low-level machine-specific assembly code
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Why Do We Need Compilers?

It is difficult to write, debug, maintain, and understand
programs written in assembly language

Tremendous increase in productivity when first compilers
appeared (0050 years ago)

e There are still a few cases when people manually write
assembly code
— E.g. to access low-level machine resources such as device drivers

— These code fragments are very small; the compiler handles the rest of
the code in the application
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Overall Compiler Structure

‘ High-level source code ‘

Low-level machine code
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Source Code

* Optimized for human readability
— Matches human notions of grammar
— Uses named constructs such as variables and
procedures

int expr(int n)

{
int d;
d=4*nx*xnx (@+1) x (n+1);
return d;

}
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Assembly and Machine Code

* Optimized for hardware

— Consists of machine instructions; uses registers
and unnamed memory locations

— Much harder to understand by humans

1da $30,-32($30) addq $3,1,$4
atq $26,0(330) mili $2,84,82
stq $15,8($30) 1dl $3,16($15)
bid $30,850.815 addg 83,1
N 281 mull $2,
tl $1,16($15) stl $2,20($15)
,16(815) 1d1 $0,20($15)
$£124(818) br 8318
,24($15) $33
bis 185,92 bis $15,$15,$30
addy $270,$3 1dq $26,0($30)
16(s15) lag $15/6($30)
mull $4,$3,$2 addq _$30,32,$30
1d1 83, 16(415) Tot 831, (828) 1
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Translation Efficiency

Goal: generate machine code that describes the same
computation as the source code

Is there a unique translation?

Is there an algorithm for an “ideal translation”? (ideal
= either fastest or smallest generated code)

Compiler optimizations = find better translations!
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Example: Output Assembly Code

Unoptimized Code Optimized Code

bis $16,516,51

bis §

2
N
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Translation Correctness

* The generated code must execute precisely the
same computation as in the source code

 Correctness is very important!
— hard to debug programs with broken compiler...
— implications for development cost, security
— this course: techniques proved to ensure correct
translation
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How To Translate?

* Translation is a complex process
— source language and generated code are very different

* Structure the translation
— Define intermediate steps
— At each step use a specific program representation

— More machine-specific, less language-specific as
translation proceeds
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Simplified Compiler Structure

Source code —_—

if (b ==0) a =b; Understand
source code Front end
(machine-independent)
Intermediate code l
—f
Optimize Optimizer
Intermediate code
Generate B.ack end
Assembly code bl d (machine-dependent)
cmp $0,ecx assembly code

cmovz edx,ecx 4—‘

S S
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Simplified Front-End Structure

Source code
(character stream)

Analogy

Front end can be explained by analogy to the
way humans understand natural languages

Lexical analysis

— Natural language: “He wrote the program”

words: “he” “wrote” “the” “program”

— Programming language “if (b == 0) a = b”

tokens: “if” (" b’ f==" Q" 9 gt s Y
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Analogy (ctd)

* Semantic analysis
— Natural language:
He wrote  the computer

noun verb article  noun
Syntax is correct; semantics is wrong!

— Programming language
if (b == 0)

a = foo
test assignment
if a is an integer and foo is a method, the compiler will

complain.

. o Lexical
i — - b -
if (b==0) a = b; Lexical Analysis errors
Token stream
5 Syntax
-
Syntax Analysis errors
Abstract syntax tree
R S Semantic
Semantic Analysis| —— .
Abstract syntax tree
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Analogy (ctd)
* Syntactic analysis
— Natural language:
He wrote  the program
noun verb article  noun
subject predicate object
sentence
— Programming language
if ==0 ) a=>b
K [ V17
test  assignment
. —
if-Staterent
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Beyond Assembly Code

— Source code
Lexical Analysis
Syntax Analysis
Compiler | _Semantic Analysis

Optimization

Code Generation

Assembler

Assembly code

Object code
(machine code)

Fully-resolved object
code (machine code)

Executable image

€S 412/413  Spring 2006 Introduction to Compilers

30




Tentative Schedule

Lexical analysis

Syntax analysis
Semantic analysis
Prelim #1

Simple code generation
Analysis

Optimizations

Prelim #2

Advanced topics
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3 lectures
6 lectures
5 lectures

6 lectures
8 lectures

3 lectures

6 lectures
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