CS42/413
Introduction to Compilers
Radu Rugina

Lecture 36: DU Chains and SSA Form
03 May 04

Outline

• Program representations:
 – DU chains
 – UD chains
 – Static Single Assignment

• Analysis using DU/UD chains, SSA

CFG Representation

• Accurate analysis: need a representation which captures
 program control flow
• Dataflow analysis uses CFG representation
 – Graph edges characterize control flow

• Issue: use control flow to compute data flow
• Consequences: analysis of a CFG subgraph may modify only
 a small fraction of the dataflow information
• Expensive to propagate all dataflow information along
 control flow when most of it remains unchanged
• … can’t we explicitly compute data flow?

Example

```c
int foo(int n) {
    int x=2, y=3;
    if (n>1) {
        x=n+x*y;
    }
    while (n>1) {
        y=y*n;
        n = n-1;
    }
    return x+y;
}
```

```c
int x=1
    y=2
    if (n>1)
        t1=x*y
        x = x+t1
    }
    while (n>1) {
        y=y*n;
        n = n-1;
    }
    t2=x+y
    return t2
```

Definitions and Uses

• How can we avoid propagating the information through all
 CFG subgraphs?

• Solution: for each definition of a variable, identify all
 possible uses of that variable
 – Directly propagate the information from the definitions
 to the uses
 – Skip CFG subgraphs that don’t define/use the variable
Definitions and Uses

- Uses of $x = 1$
 - $t_1 = x^2, t_2 = x + y$
 - no uses in while loop
- Uses of $y = 2$
 - $y = y^n, t_2 = x + y$
 - no uses in if statement

\[
\begin{align*}
x &= 1 \\
y &= 2 \\
t_1 &= x^2 \\
x &= n + t_1 \\
y &= y^n \\
n &= n - 1 \\
t_2 &= x + y \\
&\text{return } t_2.
\end{align*}
\]

Def-Use Chains

- Use a list structure = def-use (DU) chain
 - For each definition d compute a chain (list) of uses that d may reach
 - Is a sparse representation of data flow
 - Compute information only at the program points where it is actually used!
- Once we compute DU chains, we don’t need the CFG program representation to perform analysis
 - No need to compute information at each program point
 - Must re-formulate analysis algorithms using DU chains

Analysis Using DU Chains

- Can use a worklist algorithm to implement analysis
- Initialization: worklist = all instructions
- At each step:
 - Remove an instruction from the worklist
 - Compute effect of the instruction (transfer function)
 - Propagate information directly to all the uses (use the meet operator to merge information)
 - Add all the uses to the worklist
- Terminate when the worklist is empty

Example: DU Chains

\[
\begin{align*}
(1) x &= 1 \\
(2) y &= 2 \\
(3) \text{if } (n > 1) &\text{DU=} \\
(4) t_1 &= x^2 \\
(5) x &= n + t_1 \\
(6) \text{if } (n > 1) &\text{DU=} \\
(7) y &= y^n \\
(8) n &= n - 1 \\
(9) t_2 &= x + y \\
(10) \text{return } t_2.
\end{align*}
\]

Static Single Assignment

- Idea: rewrite program to explicitly express the DU/UD relation in the code
- SSA form:
 - Each variable defined only once
 - Use ε-functions at control-flow join points
- UD relation: for each use of a variable, there is a unique definition of that variable
- DU relation: for each definition of a variable, there may be multiple uses of that definition
- Results in an implicit representation of DU/UD relation!
Example

Program

\[
\begin{align*}
x & = 0 \\
y & = 1 \\
\text{if } (n > 0) & \\
x & = x + y \\
y & = y \cdot x \\
n & = x^y
\end{align*}
\]

SSA Form

\[
\begin{align*}
x_1 & = 0 \\
y_1 & = 1 \\
\text{if } (n_1 > 0) & \\
x_2 & = x_1 + y_1 \\
y_2 & = y_1 \cdot x_1 \\
x_3 & = \phi(x_1, x_2) \\
y_3 & = \phi(y_1, y_2) \\
n_2 & = x_3^y \cdot y_3
\end{align*}
\]

Placing \(\phi \) Functions

- Placing \(\phi \)-functions at each join point is inefficient
- Use dominator relation
- Dominance frontier of \(n \) = nodes \(w \) such that \(n \) dominates a predecessor of \(w \), but does not strictly dominate \(w \)
- Rule: if node \(n \) defines variable \(x \), then place a \(\phi \)-function for \(x \) at each of the nodes in the dominance frontier of \(n \)
 - Intuition:
 - if a definition \(x = \ldots \) dominates node \(n \) then any path to \(n \) goes through that definition - no need to place any \(\phi \)-function
 - place \(\phi \)-functions at the nodes adjacent to the region of nodes dominated by \(x = \ldots \)

Dominator Relation

Nodes dominated by \(x = x + 1 \)

Dominance Frontier

Dominance frontier of \(x = x + 1 \)

Placing \(\phi \) Functions

\[
\begin{align*}
x_1 & = 0 \\
x_2 & = 2 \\
x_3 & = \phi(x_1, x_1) \\
x_4 & = \phi(x_2, x_1) \\
x_5 & = \phi(x_3, x_1) \\
x_6 & = \phi(x_2, x_3, x_5)
\end{align*}
\]

Space Requirements

- SSA representation requires less space than DU chains
- Consider \(N \) definitions of \(x \) which may reach \(M \) uses of \(x \)

- Space required for DU chain: \(N \cdot M \)
- Space required for SSA form: usually linear in the program size (\(N + M \))

- Example:
 - if \((\ldots) x = 1; \) if \((\ldots) x = 2; \ldots; \) if \((\ldots) x = \text{in}; \)
 - if \((\ldots) y = x + 1; \) if \((\ldots) y = x + 2; \ldots; \) if \((\ldots) y = x + 20; \)
Analysis Using SSA Form

- Similar to analysis using DU chains
- If we want to compute some information for each variable (e.g. constant folding): keep a single set of values valid at all program points
- Flow of values explicitly represented φ-functions
 - Transfer function of φ-function is meet operation of arguments

Example

- Functions for x, y, n
- Variables after renaming: x1, x2, x3; y1, y2, y3; n1, n2, n3
- Constant folding:
 Iteratively compute constant values for x1-x3, y1-y3, n1-n3

x = 1
y = 2
n = 0
while (n<10) {
 x = y*y;
 y = x-y;
 n = n+1;
}

Aliasing and SSA

- Load and store instructions are problematic
 - Load: don't know which variable is actually used
 - Store: don't know which variable is actually defined
- Conservative approximation:
 - Load: insert a function which merges all variables
 - Store: insert φ-function for each variable
- With pointer aliasing information:
 - Load: merge only the possible targets of the load
 - Store: insert φ-functions only for variables that may be modified
- Need to perform pointer analysis before translation to SSA
 - Alias analysis = fundamental analysis

Summary

- DU chains: sparse representation of data flow
 - Allow efficient implementation: information flows from definitions directly to the uses
 - Must compute DU chains first
- SSA: better representation
 - Smaller size than DU chains
 - Must efficiently place φ-functions
- Aliasing information required for either representation