Loop optimizations

- Now we know which are the loops
- Next: optimize these loops
 - Loop invariant code motion
 - Strength reduction of induction variables
 - Induction variable elimination

Loop Invariant Code Motion

- Idea: if a computation produces same result in all loop iterations, move it out of the loop
- Example: for (i=0; i<10; i++)
 a[i] = 10*i + x*x;
- Expression x*x produces the same result in each iteration; move it of the loop:
 \[t = x^2; \]
 for (i=0; i<10; i++)
 a[i] = 10*i + t;

Loop Invariant Computation

- An instruction \(a = b \text{ OP } c \) is loop-invariant if each operand is:
 - Constant, or
 - Has all definitions outside the loop, or
 - Has exactly one definition, and that is a loop-invariant computation
- Reaching definitions analysis computes all the definitions of \(x \) and \(y \) which may reach \(t = x \text{ OP } y \)

Algorithm

\(\text{INV} = \emptyset \)

Repeat
 for each instruction \(i \in \text{INV} \)
 if operands are constants, or
 have definitions outside the loop, or
 have exactly one definition \(d \in \text{INV} \)
 then \(\text{INV} = \text{INV} \cup \{i\} \)
Until no changes in \(\text{INV} \)

Code Motion

- Next: move loop-invariant code out of the loop
- Suppose \(a = b \text{ OP } c \) is loop-invariant
- We want to hoist it out of the loop
- Code motion of a definition \(d: a = b \text{ OP } c \) in pre-header is valid if:
 1. Definition \(d \) dominates all loop exits where \(a \) is live
 2. There is no other definition of \(a \) in loop
 3. All uses of \(a \) in loop can only be reached from definition \(d \)
Other Issues

- **Preserve dependencies** between loop-invariant instructions when hoisting code out of the loop

  ```
  for (i=0; i<N; i++) {
    x = y+z;
    t = x^2;
    a[i] = 10*i + x^2;
  }
  ``

- **Nested loops**: apply loop invariant code motion algorithm multiple times
  
  ```
 for (i=0; i<N; i++)
 for (j=0; j<M; j++)
 a[i][j] = x^2 + 10*i^2 + 100*j^2;
 ``

Induction Variables

- **An induction variable** is a variable in a loop, whose value is a function of the loop iteration number \(v = f(i) \)

- In compilers, this a linear function:

 \(f(i) = c^i + d \)

- **Observation**: linear combinations of linear functions are linear functions

 - Consequence: linear combinations of induction variables are induction variables

Families of Induction Variables

- Each basic induction variable defines a family of induction variables

 - Each variable in the family of \(i \) is a linear function of \(i \)

- A variable \(k \) is in the family of basic variable \(i \) if:

 1. \(k = i \) (the basic variable itself)
 2. \(k \) is a linear function of other variables in the family of \(i \):

 \[k = c^j + d \]

- A triple \(<i, a, b>\) denotes an induction variable \(k \) in the family of \(i \) such that:

 \[k = i^a + b \]

- Triple for basic variable \(i \) is \(<i, 1, 0>\)

Dataflow Analysis Formulation

- **Detection of induction variables**: can formulate problem using the dataflow analysis framework

 - Analyze loop body sub-graph, except the back edge
 - Analysis is similar to constant folding

- **Dataflow information**: a function \(F \) that assigns a triple to each variable:

 - \(F(k) = <i,a,b> \), if \(k \) is an induction variable in family of \(i \)
 - \(F(k) = \bot \), if \(k \) is not an induction variable
 - \(F(k) = \top \), if don't know if \(k \) is an induction variable

- **Meet operation**: if \(F_1 \) and \(F_2 \) are two functions, then:

 \[(F_1 \sqcap F_2)(\nu) = \begin{cases}
 <i,a,b> & \text{if } F_1(\nu) = F_2(\nu) = <i,a,b> \\
 \bot & \text{otherwise}
 \end{cases} \]

- **Initialization**:\[F(i) = <i,1,0> \] for each basic variable \(i \)

- **Transfer function**:

 - Consider \(F \) is information before instruction \(I \)
 - Compute information \(F' \) after \(I \)
Dataflow Analysis Formulation

- For a definition $k = j + c$, where k is not a basic induction variable
 $F(v) = <i, a, b + c>$, if $v = k$ and $F(j) = <i, a, b>$
 $F(v) = F(v)$, otherwise

- For a definition $k = j + c$, where k is not a basic induction variable
 $F(v) = <i, a, b + c>$, if $v = k$ and $F(j) = <i, a, b>$
 $F(v) = F(v)$, otherwise

- For any other instruction and any variable k in def[I] :
 $F(v) = _$, if $F(v) = <k, a, b>$
 $F(v) = F(v)$, otherwise

Strength Reduction

- Basic idea: replace expensive operations (multiplications) with cheaper ones (additions) in definitions of induction variables

 while ($i < 10$) {
 $j = \ldots$; // $<i, 3, 1>$
 $a[j] = a[j] - 2$; // $s = s + 6$
 $i = i + 2$;
 }

- Benefit: cheaper to compute $s = s + 6$ than $j = 3^i$
 - $s = s + 6$ requires an addition
 - $j = 3^i$ requires a multiplication

General Algorithm

- Algorithm:

 For each induction variable j with triple $<i, a, b>$
 whose definition involves multiplication:
 1. create a new variable s
 2. replace definition of j with $j = s$
 3. immediately after $i = i + c$, insert $s = s + a \times c$
 (here $a \times c$ is constant)
 4. insert $s = a^i + b$ into preheader

- Correctness:
 this transformation maintains the invariant that $s = a^i + b$

Strength Reduction

- Gives opportunities for copy propagation, dead code elimination

 $s = 3^i + 1$;
 while ($i < 10$) {
 $j = s$;
 $a[j] = a[j] - 2$; // $s = s + 6$
 $i = i + 2$;
 }

Induction Variable Elimination

- Idea: eliminate each basic induction variable whose only uses
 are in loop test conditions and in their own definitions $i = i + c$
 - rewrite loop test to eliminate induction variable

 $s = 3^i + 1$;
 while ($i < 10$) {
 $a[s] = a[s] - 2$;
 $i = i + 2$;
 $s = s + 6$;
 }

- When are induction variables used only in loop tests?
 - Usually, after strength reduction
 - Use algorithm from strength reduction even if definitions
 of induction variables don’t involve multiplications

Induction Variable Elimination

- Rewrite test condition using derived induction variables
- Remove definition of basic induction variables (if not used
 after the loop)

 $s = 3^i + 1$;
 while ($i < 10$) {
 $a[s] = a[s] - 2$;
 $i = i + 2$;
 $s = s + 6$;
 }

 $s = 3^i + 1$;
 while ($i < 31$) {
 $a[s] = a[s] - 2$;
 $i = i + 2$;
 $s = s + 6$;
 }
Induction Variable Elimination

For each basic induction variable i whose only uses are
- The test condition $i < u$
- The definition of i: $i = i + c$

Take a derived induction variable k in its family, with triple $<i,c,d>$$
Replace test condition $i < u$ with $k < c^*u+d$
Remove definition $i = i + c$ if i is not live on loop exit

Where We Are

- Defined dataflow analysis framework
- Used it for several analyses
 - Live variables
 - Available expressions
 - Reaching definitions
 - Constant folding
- Loop transformations
 - Loop invariant code motion
 - Induction variables
- Next:
 - Pointer alias analysis

Pointer Alias Analysis

- Most languages use variables containing addresses
 - E.g. pointers (C, C++), references (Java), call-by-reference parameters (Pascal, C++, Fortran)
- **Pointer aliases**: multiple names for the same memory location, which occur when dereferencing variables that hold memory addresses
- **Problem**:
 - Don’t know what variables read and written by accesses via pointer aliases (e.g. $*p=y, x=*p, p.f=y, x=p.f, etc.$)
 - Need to know accessed variables to compute dataflow information after each instruction

Aliasing Problem

- **Goal**: for each variable v that may hold an address, compute the set $\text{Ptr}(v)$ of possible targets of v
 - $\text{Ptr}(v)$ is a set of variables (or objects)
 - $\text{Ptr}(v)$ includes stack- and heap-allocated variables (objects)
- Is a "may" analysis: if $x \in \text{Ptr}(v)$, then v may hold the address of x in some execution of the program
- No alias information: for each variable v, $\text{Ptr}(v) = V$, where V is the set of all variables in the program

Simple Alias Analyses

- **Address-taken analysis**:
 - Consider AT = set of variables whose addresses are taken
 - Then, $\text{Ptr}(v) = AT$, for each pointer variable v
 - Addresses of heap variables are always at allocation sites (e.g. $x = \text{new int}[2], x = \text{malloc}(8)$)
 - Hence AT includes all heap variables
- **Type-based alias analysis**:
 - If v is a pointer (or reference) to type T, then $\text{Ptr}(v)$ is the set of all variables of type T
 - Example: $p.f$ and $q.f$ can be aliases only if p and q are references to objects of the same type
 - Works only for strongly-typed languages
Dataflow Alias Analysis

- **Dataflow analysis**: for each variable v_i, compute points-to set $\text{Ptr}(v_i)$ at each program point.

- **Dataflow information**: set $\text{Ptr}(v_i)$ for each variable v_i
 - Can be represented as a graph $G \subseteq 2^{V \times V}$
 - Nodes = V (program variables)
 - There is an edge $v \rightarrow u$ if $u \in \text{Ptr}(v_i)$

 $$\text{Ptr}(x) = (y), \quad \text{Ptr}(y) = (x, t)$$

Dataflow Alias Analysis

- **Dataflow Lattice**: $(2^{V \times V}, \supseteq)$
 - $V \times V$ is set of all possible points-to relations
 - "may" analysis: top element is \emptyset, meet operation is \cup

- **Transfer functions**: use standard dataflow transfer functions:
 - $\text{out}[i] = (\text{in}[i] \cap \text{kill}[i]) \cup \text{gen}[i]$

 $$p = \text{addr} \quad \text{kill}[i] = \{(p, x) \in V \} \quad \text{gen}[i] = \{(p, q)\}$$

 $$p = q \quad \text{kill}[i] = \{(p, x) \in V \} \quad \text{gen}[i] = \{(p, q) \times \text{Ptr}(q)\}$$

 $$p = *q \quad \text{kill}[i] = \{(p, x) \in V \} \quad \text{gen}[i] = \{(p, \text{Ptr}(\text{Ptr}(q))\}$$

 $$p = q \quad \text{kill}[i] = \{(p, x) \times \text{Ptr}(q)\}$$

 - For all other instruction, $\text{kill}[i] = \{\}$, $\text{gen}[i] = \{\}$

- **Transfer functions are monotonic, but not distributive!**

Alias Analysis Example

- **Program**
 - $x = &a$
 - $y = &b$
 - $c = &i$
 - if(i) $x = y$
 - $x = &c$

 - **CFG**

 - Points-to Graph (at the end of program)

- **Alias Analysis Uses**
 - Once alias information is available, use it in other dataflow analyses

 - **Example**: Live variable analysis

 Use alias information to compute $\text{use}[i]$ and $\text{def}[i]$ for load and store statements:

 $$x = \text{use}[i] = \{y\} \cup \text{Ptr}(y) \quad \text{def}[i] = \{x\}$$

 $$x = y \quad \text{use}[i] = \{x, y\} \quad \text{def}[i] = \text{Ptr}(x)$$

CS 412/413 Spring 2004 Introduction to Compilers