CS412/413

Introduction to Compilers Radu Rugina

Lecture 25: Dataflow Analysis Frameworks 02 Apr 04

Generalization

- Live variable analysis and detection of available copies are similar:
 - Define some information that they need to compute
 - Build constraints for the information
 - Solve constraints iteratively:
 - The information always "increases" during iteration
 - Eventually, it reaches a fixed point.
- We would like a general framework
 - Framework applicable to many other analyses
 - Live variable/copy propagation = instances of the framework

CS 412/413 Spring 2004 Introduction to Compilers 11

Dataflow Analysis Framework

- Dataflow analysis = a common framework for many compiler analyses
 - Computes some information at each program point
 - The computed information characterizes all possible executions of the program
- Basic methodology:
 - Describe information about the program using an algebraic structure called lattice
 - Build constraints which show how instructions and control flow modify the information in the lattice
 - Iteratively solve constraints

CS 412/413 Spring 2004 Introduction to Compilers 12

Lattices and Partial Orders

- · Lattice definition uses the concept of partial order relation
- A partial order (P, ≡) consists of:
 - A set P
 - A partial order relation

 which is:
 - Reflexive $X \sqsubseteq X$
 - 2. Anti-symmetric $x \subseteq y$, $y \subseteq x \Rightarrow x = y$ 3. Transitive: $X \sqsubseteq Y, Y \sqsubseteq Z \Rightarrow X \sqsubseteq Z$
- Called "partial order" because not all elements are comparable

CS 412/413 Spring 2004

Introduction to Compilers

15

17

Lattices and Lower/Upper Bounds

- · Lattice definition uses the concept of lower and upper bounds
- If (P, \sqsubseteq) is a partial order and $S \subseteq P$, then:
 - 1. $x \in P$ is a lower bound of S if $x \subseteq y$, for all $y \in S$
 - 2. $x \in P$ is an upper bound of S if $y \subseteq x$, for all $y \in S$
- There may be multiple lower and upper bounds of the same set S

CS 412/413 Spring 2004

Introduction to Compilers

LUB and GLB

- Define least upper bounds (LUB) and greatest lower bounds (GLB)
- If (P, \sqsubseteq) is a partial order and $S \subseteq P$, then:
 - 1. $x \in P$ is GLB of S if:
 - a) x is an lower bound of S
 - b) $y \subseteq x$, for any lower bound y of S
 - 2. $x \in P$ is a LUB of S if:
 - a) x is an upper bound of S
 - b) $x \subseteq y$, for any upper bound y of S
- ... are GLB and LUB unique?

CS 412/413 Spring 2004

Introduction to Compilers

Lattices

- A pair (L,⊑) is a lattice if:
 - 1. (L,⊑) is a partial order
 - 2. Any finite subset $S \subseteq L$ has a LUB and a GLB
- Can define two operators in lattices:
- 1. Meet operator: $x \sqcap y = GLB(\{x,y\})$
- 2. Join operator: $x \sqcup y = LUB(\{x,y\})$
- · Meet and join are well-defined for lattices

CS 412/413 Spring 2004

Introduction to Compilers

Complete Lattices

- A pair (L,⊑) is a complete lattice if:
 - 1. (L,⊑) is a partial order
 - 2. Any subset $S \subseteq L$ has a LUB and a GLB
- Can define meet and join operators
- Can also define two special elements:
 - 1. Bottom element: $\bot = GLB(L)$
 - 2. Top element: $\top = LUB(L)$
- · All finite lattices are complete

CS 412/413 Spring 2004

Introduction to Compilers

Example Lattice

- Consider S = {a,b,c} and its power set P = {Ø, {a}, {b}, {c}, {a,b}, {b,c}, {a,c} {a,b,c}}
- Define partial order as set inclusion: X⊆Y
 - Reflexive $\begin{array}{ll} - \text{ Reflexive} & \mathsf{X} \subseteq \mathsf{Y} \\ - \text{ Anti-symmetric} & \mathsf{X} \subseteq \mathsf{Y}, \, \mathsf{Y} \subseteq \mathsf{X} \ \Rightarrow \ \mathsf{X} = \mathsf{Y} \end{array}$
 - $X \subseteq Y, Y \subseteq Z \Rightarrow X \subseteq Z$ Transitive
- Also, for any two elements of P, there is a set which includes both and another set which is included in both
- Therefore (P,⊆) is a (complete) lattice

CS 412/413 Spring 2004

Introduction to Compilers

18

Hasse Diagrams

 Hasse diagram = graphical representation of a lattice where x is below y when x

y and x

y y

CS 412/413 Spring 2004

Introduction to Compilers

Power Set Lattice

{a,b,c}

{a,c}

{b}

Ø

{b,c}

{c}

- Partial order: ⊆
 (set inclusion)
- Meet: ∩
 (set intersection)
- Join: ∪ (set union)
- Top element: {a,b,c} (whole set)
- Bottom element: Ø (empty set)

CS 412/413 Spring 2004

Introduction to Compilers

{a}

Reversed Lattice

{a,b}

- Partial order: ⊇ (set inclusion)
- Meet: ∪ (set union)
- Join: ∩ (set intersection)
- Top element: ∅ (empty set)
- Bottom element: {a,b,c} (whole set)

CS 412/413 Spring 2004

Introduction to Compilers

Ø

{a,c}

{a,b,c}

{b,c}

21

23

Relation To Dataflow Analysis

- Information computed by live variable analysis and available copies can be expressed as elements of lattices
- Live variables: if V is the set of all variables in the program and P the power set of V, then:
 - (P,⊆) is a lattice
 - sets of live variables are elements of this lattice

CS 412/413 Spring 2004

Introduction to Compilers

Relation To Analysis of Programs

- Copy Propagation:
 - V is the set of all variables in the program
 - V x V the cartesian product representing all possible copy instructions
 - P the power set of V x V
- Then:
 - (P,⊆) is a lattice
 - sets of available copies are lattice elements

CS 412/413 Spring 2004

Introduction to Compilers

More About Lattices

- In a lattice (L, ⊑), the following are equivalent:
 - 1. x ⊑ y
 - 2. $x \sqcap y = x$
 - 3. $x \cup y = y$
- Note: meet and join operations were defined using the partial order relation

CS 412/413 Spring 2004

Introduction to Compilers

24

Proof

- Prove that $x \sqsubseteq y$ implies $x \sqcap y = x$:
 - -x is a lower bound of $\{x,y\}$
 - All lower bounds of $\{x,y\}$ are less than x,y
 - In particular, they are less than x
- Prove that $x \sqcap y = x$ implies $x \sqsubseteq y$:
 - -x is a lower bound of $\{x,y\}$
 - -x is less than x and y
 - In particular, x is less than y

CS 412/413 Spring 2004

Introduction to Compilers

Proof

- Prove that $x \sqsubseteq y$ implies $x \sqcup y = y$:
 - -y is an upper bound of $\{x,y\}$
 - All upper bounds of $\{x,y\}$ greater than x,y
 - In particular, they are greater than y
- Prove that $x \sqcup y = y$ implies $x \sqsubseteq y$:
 - -y is a upper bound of $\{x,y\}$
 - y is greater than x and y
 - In particular, y is greater than x

CS 412/413 Spring 2004

Introduction to Compilers

Properties of Meet and Join

- The meet and join operators are:
 - 1. Associative $(x \sqcap y) \sqcap z = x \sqcap (y \sqcap z)$
 - 2. Commutative $x \sqcap y = y \sqcap x$
 - 3. Idempotent: $x \sqcap x = x$
- Property: If "¬" is an associative, commutative, and idempotent operator, then the relation "¬¬" defined as x ¬¬ y = x is a partial order
- Above property provides an alternative definition of a partial orders and lattices starting from the meet (join) operator

CS 412/413 Spring 2004

Introduction to Compilers

27

29

Using Lattices

- Assume information we want to compute in a program is expressed using a lattice L
- To compute the information at each program point we need to:
 - Determine how each instruction in the program changes the information in the lattice
 - Determine how lattice information changes at join/split points in the control flow

CS 412/413 Spring 2004

Introduction to Compilers

28

30

Transfer Functions

- Dataflow analysis defines a transfer function $F:L\to L \text{ for each instruction in the program}$
- Describes how the instruction modifies the information in the lattice
- Consider in[I] is information before I, and out[I] is information after I

• Forward analysis: out[I] = F(in[I])

• Backward analysis: in[I] = F(out[I])

CS 412/413 Spring 2004

Introduction to Compilers

Basic Blocks

- Can extend the concept of transfer function to basic blocks using function composition
- Consider:
 - Basic block B consists of instructions (I $_{\!1},\,...,\,I_{\!n}\!$) with transfer functions F $_{\!1},\,...,\,F_{\!n}$
 - in[B] is information before B
 - out[B] is information after B

• Forward analysis: $out[B] = F_n(...(F_1(in[B])))$

• Backward analysis: $in[I] = F_1(...(F_n(out[i])))$

CS 412/413 Spring 2004

Introduction to Compilers

Split/Join Points

- Dataflow analysis uses meet/join operations at split/join points in the control flow
- Consider in[B] is lattice information at beginning of block B and out[B] is lattice information at end of B
- Forward analysis: $in[B] = \prod \{out[B'] \mid B' \in pred(B)\}$
- Backward analysis: $out[B] = \prod \{in[B'] \mid B' \in succ(B)\}$
- Can alternatively use join operation ⊔ (equivalent to using the meet operation □ in the reversed lattice)

CS 412/413 Spring 2004

Introduction to Compilers