CS42/413

Introduction to Compilers
Radu Rugina

Lecture 15: Subtyping
27 Feb 04

Subtypes in Java

<table>
<thead>
<tr>
<th>Interface I₁ extends I₂ ⟨...⟩</th>
<th>Class C implements I ⟨...⟩</th>
<th>Class C₂ extends C₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁</td>
<td>I</td>
<td>C₂</td>
</tr>
<tr>
<td>I</td>
<td>C</td>
<td>C₁</td>
</tr>
<tr>
<td>I₁,₂</td>
<td>C₁ <: I</td>
<td>C₁,₂</td>
</tr>
</tbody>
</table>

Subtype Hierarchy

- Introduction of subtype relation creates a hierarchy of types: subtype hierarchy
- Type or subtype hierarchy

Type-checking

- **Problem:** what are the valid types for an object?
- **Subsumption rule** connects subtyping relation and ordinary typing judgements

 \[
 \begin{align*}
 A & \vdash E : S \\
 S & <: T \\
 A & \vdash E : T \\
 \end{align*}
 \]

 \[
 S <: T \implies \text{values}(S) \subseteq \text{values}(T)
 \]

- "If expression E has type S, it also has type T for every T such that S <: T"

Review

- **Objects:** fields, methods, public/private qualifiers
- **Object types:** field types + method signatures
 - Interfaces = pure types
 - Objects = types and implementation
- **Object inheritance**
 - Induces a subtyping relationship S <: T
 - Similar for interfaces
 - Subtyping allows multiple implementations
 - Java: extends, implements

Type-checking

- Rules for checking code must allow a subtype where a supertype was expected
- Old rule for assignment:

 \[
 \begin{align*}
 \text{id : T} & \in A \\
 A & \vdash E : T \\
 A & \vdash \text{id = E : T}
 \end{align*}
 \]

 What needs to change here?
Type-checking Overview

- Rules for checking code must allow a subtype where a supertype was expected
- New rule for assignment:

\[
A \rightarrow E : T_p \\
T_p < : T \\
de : T \in A \\
A \rightarrow id = E : T
\]

\[
A \rightarrow E : T_p \\
T_p < : T \\
\text{id} : T \in A \\
A \rightarrow E : T \\
A \rightarrow id = E : T
\]

Type-checking Code

class Assignment extends ASTNode {
 Variable var; ExprNode E;
 Type typeCheck(Symtab s) {
 Type Tp = E.typeCheck(s);
 Type T = s.lookup(var);
 if (Tp.subtypeOf(T)) return T;
 else throw new TypecheckError(E); }
 }

A \rightarrow E : T_p \\
T_p < : T \\
\text{id} : T \in A \\
A \rightarrow id = E : T

Issues

- When are two object(record) types identical?
 - Do struct foo (int x,y;) and struct bar (int x,y;) have the same type?

- We know inheritance (i.e. adding methods and fields) induces subtyping relation

- Issues in the presence of subtyping:
 1. Types of records with object fields
 class C1 { Point p; }
 class C2 { ColoredPoint p; }
 2. Is it safe to allow fields to be written?
 3. Types of functions (methods)
 Point foo(Point p)
 ColoredPoint bar(ColoredPoint p)

Type Equivalence

- Types derived with constructors have names
- When are record types equivalent?
 - When they have the same fields (i.e. same \text{structure})?
 struct point (int x1, y1;) = struct edge (int n1, n2;)
 - ... or only when they have the same \text{names}?
 - Types with the same \text{structure} are different if they have different names

Type Equivalence

- Name equivalence: types are equal if they are defined by the same type constructor expression and bound to the same name
 - C/C++ example:
 struct foo (int x;)
 struct bar (int x;)

- Structural equivalence: two types are equal if their constructor expressions are equivalent
 - C/C++ example:
 typedef struct foo t1[];
 typedef struct foo t2[];

Is this code legal?
Declared vs. Implicit Subtyping

Java
```java
class C1 {
    int x, y;
}
class C2 extends C1 {
    int z;
    C1 a = new C2();
}
```

Modula-3
```plaintext
TYPE t1 = OBJECT
   x,y: INTEGER
END;
TYPE t2 = OBJECT
   x,y,z: INTEGER
END;
VAR a: t1 := NEW(t2);
```

Named vs. Structural Subtyping

- **Name equivalence of types (e.g., Java):** direct subtypes explicitly declared; subtype relationships inferred by transitivity
- **Structural equivalence of types (e.g., Modula-3):** subtypes inferred based on structure of types; extends declaration is optional
- Java: still need to check explicit interface declarations similarly to structural subtyping

The Subtype Relation

For records:

\[S <: T \]
\[\{ \text{int } x; \text{int } y; \text{int color;} \} <: \{ \text{int } x; \text{int } y; \} ? \]

- Heap-allocated:
 \[
 \begin{array}{c}
 x \\
 y \\
 c
 \end{array}
 <=:
 \[
 \begin{array}{c}
 x \\
 y
 \end{array}
 \]

- Stack allocated:
 \[
 \begin{array}{c}
 x \\
 y \\
 c
 \end{array}
 <=:
 \[
 \begin{array}{c}
 x \\
 y
 \end{array}
 \]

Width Subtyping for Records

- How to formally express subtyping in the presence of structural equivalence?
- Example:
 \[\{ \text{int } x; \text{int } y; \text{int color;} \} <: \{ \text{int } x; \text{int } y; \} \]
- General rule:
 \[
 n \leq m \\
 A \vdash \{ a_1: T_1; \ldots; a_m: T_m \} <: \{ a_1: T_1; \ldots; a_m: T_m \}
 \]

Object Fields

- Assume fields can be objects
- Subtype relations for individual fields
- How does it translate to subtyping for the whole record?
- If \(\text{ColoredPoint} <: \text{Point} \), allow
 \[
 \{ \text{ColoredPoint } p; \text{int } z; \} <: \{ \text{Point } p; \text{int } z; \} ?
 \]

Field Invariance

- Try \(\{ p: \text{ColoredPoint}; \text{int } z; \} <: \{ p: \text{Point}; \text{int } z; \} \)
- Assume fields can be objects
- Subtype relations for individual fields
- How does it translate to subtyping for the whole record?
- If \(\text{ColoredPoint} <: \text{Point} \), allow
 \[
 \{ \text{ColoredPoint } p; \text{int } z; \} <: \{ \text{Point } p; \text{int } z; \} ?
 \]

 mutable (assignable) fields must be type invariant!
Immutable Record Subtyping

- **Rule:** corresponding immutable fields may be subtypes; exact match not required

\[
\begin{align*}
A \vdash T_j <: T'_j \quad (0 \leq j < n) \\
A \vdash \{a_1: T_1, \ldots, a_n: T_n\} <: \{a_1: T'_1, \ldots, a_n: T'_n\}
\end{align*}
\]

- \(n \leq m \)

\[
A \vdash \{a_1: T'_1, \ldots, a_n: T'_n\} <: \{a_1: T_1, \ldots, a_n: T_n\}
\]

Signature Conformance

- Subclass method signatures must conform to those of superclass
 - Argument types
 - Return type
 - Exceptions
 - How much conformance is really needed?

- **Java rule:** arguments and returns must have identical types, may remove exceptions

Example 1

- Consider the program:
  ```java
  interface List { List rest(int); }
  class SimpleList implements List
  { SimpleList rest(int); }
  ```

- Is this a valid program?
- Is the following subtyping relation correct?

  ```java
  { rest: int→SimpleList } <: { rest: int→List }
  ```

```
int→SimpleList <: int→List ?
```

Example 2

- Consider the program:
  ```java
  class Shape { int setLLCorner(Point p); }
  class ColoredRectangle extends Shape
  { int setLLCorner(ColoredPoint p); }
  ```

- Legal in language Eiffel
- Is this safe?

```
ColoredPoint → int  <:  Point → int ?
```

Function Subtyping

- From definition of subtyping: \(F: T_1 \rightarrow T_2 <: F': T'_1 \rightarrow T'_2 \)
 - if a value of type \(T_1 \rightarrow T_2 \) can be used wherever \(T'_1 \rightarrow T'_2 \)
 is expected

- **Requirement 1:** whenever result of \(F' \) is used, result of \(F \)
 can also be used
 - Implies \(T_2 <: T'_2 \)

- **Requirement 2:** any argument to \(F' \) must be a valid argument for \(F \)
 - Implies \(T'_1 <: T_1 \)

General Rule

- Function subtyping: \(T_1 \rightarrow T_2 <: T'_1 \rightarrow T'_2 \)
- Consider function \(f \) of type \(T_1 \rightarrow T_2 \):

```
T_1'  
\quad T'_1 
\quad T_1 
\quad T_2 
\quad T_2' 
\quad f
```
Contravariance/Covariance

- Function argument types may be contravariant
- Function result types may be covariant

\[
\frac{T_1' : T_1}{T_2' : T_2} \quad \frac{T_1 \to T_2}{T_1' \to T_2'}
\]

- Java is conservative!
 \{ rest: int \to SimpleList \} \ll \{ rest: int \to List \}

Java Arrays

- Java has array type constructor: for any type T, T[] is an array of Ts
- Java also has subtype rule:

\[
\frac{T_1 \ll T_2}{T_1[\] \ll T_2[\]}
\]

- Is this rule safe?

Java Array Subtype Problems

- Example:

 \begin{align*}
 \text{Elephant} & \ll \text{Animal, Whale} \ll \text{Animal} \\
 \text{Elephant[\]} & \dd y = \text{new Elephant[10]}; \\
 \text{Animal[\]} & \dd x = y; \\
 y[0].\text{trunk} & = \text{new Trunk(); } // \text{oops!}
 \end{align*}

- Covariant modification: unsound
- Java does run-time check!

Unification

- Some rules more problematic: if
- Rule:

\[
\begin{align*}
A \leftarrow & E : \text{bool} \\
A \leftarrow & S_1 : T \\
A \leftarrow & S_2 : T \\
A \leftarrow & \text{if (} E \text{) } S_1 \text{ else } S_2 : T
\end{align*}
\]

- Problem: if \(S_1 \) has type \(T_1 \), \(S_2 \) has type \(T_2 \). Old check: \(T_1 = T_2 \). New check: need type \(T \). How to unify \(T_1, T_2 \)?
- Occurs in Java: \(?\) operator

General Typing Derivation

\[
\begin{align*}
A \leftarrow & S_1 : T_1 < : T \\
A \leftarrow & S_2 : T_2 < : T \\
A \leftarrow & \text{if (} E \text{) } S_1 \text{ else } S_2 : T
\end{align*}
\]

How to pick \(T \)?

Unification

- Idea: unified type is least common ancestor in type hierarchy (least upper bound)
- Partial order of types must be a lattice

\[
\text{if (b) new C5() else new C3() : I2}
\]

\[
\text{LUB(C3, C5) = I2}
\]

Logic: I2 must be same as or a subtype of any type (e.g, I1) that could be the type of both a value of type C3 and a value of type C5

What if no LUB?