LR(0) Parsing Summary

- LR(0) state = set of LR(0) items
- LR(0) item = a production with a dot in RHS
- Compute LR(0) states and build DFA:
 - Use the closure operation to compute states
 - Use the goto operation to compute transitions between states
- Build the LR(0) parsing table from the DFA
- Use the LR(0) parsing table to determine whether to reduce or to shift

LR(0) Parsing Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s3</td>
<td>s2</td>
<td>g4</td>
<td>g5</td>
</tr>
<tr>
<td>2</td>
<td>S=id</td>
<td>S=id</td>
<td>S=id</td>
<td>S=id</td>
</tr>
<tr>
<td>3</td>
<td>s3</td>
<td>s2</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S=id(L)</td>
<td>S=id(L)</td>
<td>S=id(L)</td>
<td>S=id(L)</td>
</tr>
<tr>
<td>6</td>
<td>L=E</td>
<td>L=E</td>
<td>L=E</td>
<td>L=E</td>
</tr>
<tr>
<td>7</td>
<td>s3</td>
<td>s2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>L=id(L)</td>
<td>L=id(L)</td>
<td>L=id(L)</td>
<td>L=id(L)</td>
</tr>
<tr>
<td>9</td>
<td>L=id(S)</td>
<td>L=id(S)</td>
<td>L=id(S)</td>
<td>L=id(S)</td>
</tr>
</tbody>
</table>

A Non-LR(0) Grammar

- Grammar for addition of numbers:
 \[S \rightarrow S + E | E \]
 \[E \rightarrow \text{num} \]
- Left-associative version is LR(0)
- Right-associative version is not LR(0)
 \[S \rightarrow E + S | E \]
 \[E \rightarrow \text{num} \]
SLR Parsing

- SLR Parsing = easy extension of LR(0)
 - For each reduction \(X \rightarrow Y \) look at the next symbol \(C \)
 - Apply reduction only if \(C \) is in \(\text{FOLLOW}(X) \)

- SLR parsing table eliminates some conflicts
 - Same as LR(0) table except reduction rows
 - Adds reductions \(X \rightarrow Y \) only in the columns of symbols in \(\text{FOLLOW}(X) \)

- Example: \(\text{FOLLOW}(S) = \{ , , \} \)

\[
\begin{array}{ccc}
1 & s4 & + \$ \\
2 & s3 & S \rightarrow E \\
\end{array}
\]

\[g2 \ g6 \]

SLR Parsing Table

- Reductions do not fill entire rows
- Otherwise, same as LR(0)

\[
\begin{array}{ccc}
1 & s4 & + \$ \\
2 & s3 & S \rightarrow E \\
3 & s4 & S \rightarrow E \\
4 & 5 & S \rightarrow E + S \\
6 & 7 & S \rightarrow E + S \\
7 & & \text{accept} \\
\end{array}
\]

LR(1) Parsing

- Get as much power as possible out of 1 look-ahead symbol parsing table
- LR(1) grammar = recognizable by a shift/reduce parser with 1 look-ahead
- LR(1) parsing uses similar concepts as LR(0)
 - Parser states = sets of items
 - LR(1) item = LR(0) item + look-ahead symbol possibly following production

\[
\begin{align*}
\text{LR(0) item:} & \quad S \rightarrow S + E \\
\text{LR(1) item:} & \quad S \rightarrow S + E +
\end{align*}
\]

LR(1) States

- LR(1) state = set of LR(1) items
- LR(1) item = \((X \rightarrow a \cdot b , \gamma \))
- Meaning: \(a \) already matched at top of the stack; next expect to see \(b \gamma \)
- Shorthand notation
 \[
 (X \rightarrow a \cdot b , (x_0 , \ldots , x_n))
 \]
 means:
 \[
 S \rightarrow S . + E +,$$
 S \rightarrow S . + E \text{ num}
 \]
 \[
 (X \rightarrow a \cdot b , x_i)
 \]
 \[
 (X \rightarrow a \cdot b , x_i)
 \]
- Extend closure and goto operations

LR(1) Start State

- Initial state: start with \((S' \rightarrow . S , ,)\), then apply the closure operation
- Example: sum grammar

\[
\begin{align*}
S' & \rightarrow S \\
S & \rightarrow E + S | E \\
E & \rightarrow \text{num}
\end{align*}
\]

\[
\begin{align*}
S' & \rightarrow S \\
S & \rightarrow E + S \\
S & \rightarrow E \\
E & \rightarrow \text{num} +,$$
\]

LR(1) Closure

- LR(1) closure operation:
 - Start with \(\text{Closure}(S) = S \)
 - For each item in \(S \):
 \(X \rightarrow a \cdot Y \beta , z \)
 - And for each production \(Y \rightarrow \gamma \), add the following item to the closure of \(Y \):
 \(Y \rightarrow \gamma \cdot , \text{FIRST}(\beta z) \)
 - Repeat until nothing changes
- Similar to LR(0) closure, but also keeps track of the look-ahead symbol
LR(1) Goto Operation

- **LR(1) goto operation** describes transitions between LR(1) states.

 Algorithm: for a state S and a symbol Y

 $S' = \{ (X \to \alpha Y \beta, z) \mid (X \to \alpha Y \beta, z) \in S \}$

 $\text{Goto}(S, Y) = \text{Closure}(S')$

LR(1) DFA Construction

- If $S' = \text{goto} (S, x)$ then add an edge labeled x from S to S'

```
S' \rightarrow S. S
S \rightarrow . E + S $ $ S \rightarrow . E $ $ E \rightarrow . num +,$
```

LR(1) Reductions

- Reductions correspond to LR(1) items of the form $(X \to \gamma, Y)$

```
S' \rightarrow S. S
S \rightarrow . E + S $ S \rightarrow . E $ E \rightarrow . num +,$
```

LR(1) Parsing Table Construction

- Same as construction of LR(0) parsing table, except for reductions.
 - For a transition $S \rightarrow S'$ on terminal x:

 $\text{Shift}(S') \subseteq \text{Table}[S, x]$

 - For a transition $S \rightarrow S'$ on non-terminal N:

 $\text{Goto}(S') \subseteq \text{Table}[S, N]$

 - If $(X \to \gamma, Y) \in S$, then:

 $\text{Reduce}(X \to \gamma) \subseteq \text{Table}[S, Y]$

LR(1) Parsing Table Example

```
1 S' \rightarrow S. S $ S \rightarrow . E + S $ S \rightarrow . E $ E \rightarrow . num +,$
2 S \rightarrow . E + S $ S \rightarrow . E $ E \rightarrow . num +,$
3 S \rightarrow . E + S $ S \rightarrow . E + S $ S \rightarrow . E $ E \rightarrow . num +,$
```

LALR(1) Grammars

- Problem with LR(1): too many states.
 - **LALR(1) Parsing** (Look-Ahead LR)

 - Constructs LR(1) DFA and then merge any two LR(1) states whose items are identical except look-ahead.
 - Results in smaller parser tables.
 - Theoretically less powerful than LR(1).

```
S \rightarrow \text{id. } + S \rightarrow \text{id. } S \rightarrow \text{E. } S \rightarrow \text{E. } + S \rightarrow \text{E. }
```

- **LALR(1) Grammar** = a grammar whose LALR(1) parsing table has no conflicts.
LL/LR Grammar Summary
- LL parsing tables
 - Nonterminals x terminals → productions
 - Computed using FIRST/FOLLOW
- LR parsing tables
 - LR states x terminals → (shift/reduce)
 - LR states x non-terminals → goto
 - Computed using closure/goto operations on LR states
- A grammar is:
 - LL(1) if its LL(1) parsing table has no conflicts
 - LR(0) if its LR(0) parsing table has no conflicts
 - SLR if its SLR parsing table has no conflicts
 - LALR(1) if its LALR(1) parsing table has no conflicts
 - LR(1) if its LR(1) parsing table has no conflicts

Automate the Parsing Process
- Can automate:
 - The construction of LR parsing tables
 - The construction of shift-reduce parsers based on these parsing tables
- Automatic parser generators: yacc, bison, CUP
- LALR(1) parser generators
 - No much difference compared to LR(1) in practice
 - Smaller parsing tables than LR(1)
 - Augment LALR(1) grammar specification with declarations of precedence, associativity
- output: LALR(1) parser program

Classification of Grammars
LR(0) ⊆ SLR
LR(1) ⊆ LALR(1)
LR(k) ⊆ LR(k+1)
LL(k) ⊆ LL(k+1)

Associativity
S → S + E | E
E → num

What happens if we run this grammar through LALR construction?

Shift/Reduce Conflict
E → E + E
E → num
E → E + E . +
E → E . + E ,+$

shift/reduce conflict
shift: 1+(2+3) reduce: (1+2)+3
1+2+3

“when shifting ‘+’ conflicts with reducing a production, choose reduce”
E ::= E PLUS E
| LPAREN E RPAREN
| NUMBER ;

Grammar in CUP
non terminal E; terminal PLUS, LPAREN...
precedence left PLUS;
Precedence

- CUP can also handle operator precedence

\[E \rightarrow E + E \mid T \]
\[T \rightarrow T \times T \mid \text{num} \mid (E) \]

\[E \rightarrow E + E \mid E \times E \mid \text{num} \mid (E) \]

Conflicts without Precedence

\[E \rightarrow E + E \mid E \times E \mid \text{num} \mid (E) \]

Precedence in CUP

- Look-ahead information makes SLR(1), LALR(1), LR(1) grammars expressive
- Automatic parser generators support LALR(1) grammars
- Precedence, associativity declarations simplify grammar writing

Summary