CS412/413
Introduction to Compilers
Radu Rugina

Lecture 5: Context-Free Grammars
04 Feb 04

Outline

• Context-Free Grammars (CFGs)
• Derivations
• Parse trees and abstract syntax
• Ambiguous grammars

Lexical Analysis

• Translates the program (represented as a stream of characters) into a sequence of tokens
• Uses regular expressions to specify tokens
• Uses finite automata for the translation mechanism
• Lexical analyzers are also referred to as lexers or scanners

Where We Are

Source code (character stream)

if \((b == 0)\) \(a = b;\)

Token stream

if \((b == 0)\) \(a = b;\)

Abstract Syntax Tree (AST)

Syntax Analysis (Parsing)

Semantic Analysis

Parsing Analogy

• Syntax analysis for natural languages:
 recognize whether a sentence is grammatically well-formed & identify the function of each component.

"I gave him the book"

sentence

subject: I
verb: gave
indirect object: him
noun phrase: article: the
noun: book
Syntax Analysis Overview

- **Goal:** determine if the input token stream satisfies the syntax of the program
- **What we need for syntax analysis:**
 - An expressive way to describe the syntax
 - An acceptor mechanism that determines if the input token stream satisfies that syntax description
- **For lexical analysis:**
 - Regular expressions describe tokens
 - Finite automata = acceptors for regular expressions

Why Not Regular Expressions?

- Regular expressions can expressively describe tokens
 - easy to implement, efficient (using DFAs)
- Why not use regular expressions (on tokens) to specify programming language syntax?
- Reason: they don’t have enough power to express the syntax in programming languages
- Example: nested constructs (blocks, expressions, statements)
 - Language of balanced parentheses
 - \(\{ () \} \)
 - \& We need unbounded counting!

Context-Free Grammars

- **Use Context-Free Grammars (CFG):**
 - Terminal symbols = token or \(\epsilon \)
 - Non-terminal symbols = syntactic variables
 - Start symbol \(S \) = special nonterminal
 - Productions of the form \(LHS \rightarrow RHS \)
 - \(LHS = \) a single nonterminal
 - \(RHS = \) a string of terminals and non-terminals
 - Specify how non-terminals may be expanded
 - **Language generated by a grammar =** the set of strings of terminals derived from the start symbol by repeatedly applying the productions
 - \(L(G) \) denotes the language generated by grammar \(G \)

Example

- **Grammar for balanced-parenthesis language:**
 - **\(S \rightarrow \{ \} S \)**
 - **\(S \rightarrow \epsilon \)**
 - 1 nonterminal: \(S \)
 - 2 terminals \(\{ \) and \(\} \)
 - Start symbol: \(S \)
 - 2 productions:
 - If a grammar accepts a string, there is a **derivation** of that string using the productions:
 - \(S \rightarrow \{ \} S \rightarrow \{ \} \epsilon \rightarrow \{ \} \epsilon \rightarrow \{ \} \epsilon \)

Context-Free Grammars

- **Shorthand notation:** vertical bar for multiple productions
 - \(S \rightarrow a S a \mid T \)
 - \(T \rightarrow b T b \mid \epsilon \)

 - **Context-free grammars =** powerful enough to express the syntax in programming languages

 - **Derivation =** successive application of productions starting from \(S \) (the start symbol)

 - The **acceptor mechanism =** determine if there is a derivation for an input token stream

Grammars and Acceptors

- **Acceptors for context-free grammars**
 - **Yes, if** \(s \in L(G) \)
 - **No, if** \(s \notin L(G) \)

 - **Syntax analyzers (parsers) =** CFG acceptors which also output the corresponding derivation when the token stream is accepted
 - Various kinds: LL(1), LR(1), SLR, LALR
RE is Subset of CFG

- Inductively build a grammar for each regular expression
 - $\epsilon \rightarrow \epsilon$
 - $a \rightarrow a$
 - $R_1R_2 \rightarrow S_1S_2$
 - $R_1 \rightarrow R_2 \rightarrow S_1 \rightarrow S_2$
 - $R_2 \rightarrow S_1S_2 \rightarrow \epsilon$

where:
- G_1 = grammar for R_1 with start symbol S_1
- G_2 = grammar for R_2 with start symbol S_2

Sum Grammar

- Grammar:
 - $S \rightarrow E + S \mid \epsilon$
 - $E \rightarrow $ number $\mid (S)$

- Expanded:
 - 4 productions
 - 2 non-terminals: S E
 - 4 terminals: () + number
 - start symbol S

- Example accepted input:
 - $(1 + 2 + (3 + 4)) + 5$

Derivation Example

$S \rightarrow E + S \mid E$
$E \rightarrow $ number $\mid (S)$

Derive $(1 + 2 + (3 + 4)) + 5$:
- $S \rightarrow E + S \rightarrow (S) + S \rightarrow (E + S) + S$
 - $(1 + S) + S \rightarrow (1 + E + S) + S$
 - $(1 + 2 + S) + S \rightarrow (1 + 2 + E) + S$
 - $(1 + 2 + (3 + S)) + S$
 - $(1 + 2 + (3 + E)) + S$

Constructing a Derivation

- Start from S (start symbol)
- Use productions to derive a sequence of tokens from the start symbol
- For arbitrary strings α, β and γ and for a production $A \rightarrow \beta$
 - a single step of derivation is:
 - $\alpha A \gamma \rightarrow \alpha \beta \gamma$
 (i.e., substitute β for an occurrence of A)

 - Example:
 - $S \rightarrow E + S$
 - $(S + E) + E \rightarrow (E + S + E) + E$

Derivation \Rightarrow Parse Tree

- Parse Tree \Rightarrow tree representation of the derivation
- Leaves of tree are terminals
- Internal nodes: non-terminals
- No information about order of derivation steps

Parse Tree vs. AST

- Parse tree also called "concrete syntax"
- Discards (abstracts) unneeded information
Derivation order

- Can choose to apply productions in any order; select any non-terminal A: αAγ → αAγ
- Two standard orders: left- and right-most -- useful for different kinds of automatic parsing
- Leftmost derivation: In the string, find the left-most non-terminal and apply a production to it
 E + S → 1 + S
- Rightmost derivation: find right-most non-terminal...etc.
 E + S → E + E + S

Example

- S → E + S | E
 E → number | (S)
- Left-most derivation
 S → E + S → (E + S) → (1 + S) → (1 + S) + S → (1 + S + S) + S → (1 + 2 + (3 + 4)) + S → (1 + 2 + (3 + 4)) + S → (1 + 2 + (3 + 4)) + S → (1 + 2 + (3 + 4)) + S → (1 + 2 + (3 + 4)) + S → (1 + 2 + (3 + 4)) + S
- Right-most derivation
- Same parse tree: same productions chosen, diff. order

Parse Trees

- In example grammar, left-most and right-most derivations produced identical parse trees
- + operator associates to right in parse tree regardless of derivation order

An Ambiguous Grammar

- + associates to right because of right-recursive production S → E + S
- Consider another grammar:
 S → S + S | S * S | number
- Ambiguous grammar = different derivations produce different parse trees

Differing Parse Trees

S → S + S | S * S | number
- Consider expression 1 + 2 * 3
- Derivation 1: S → S + S → 1 + S → 1 + S * S → 1 + 2 * S → 1 + 2 * 3
- Derivation 2: S → S * S → S * 3 → S + S * 3 → S + 2 * 3 → 1 + 2 * 3

Impact of Ambiguity

- Different parse trees correspond to different evaluations!
- Meaning of program not defined

= 7

= 9
Eliminating Ambiguity

- Often can eliminate ambiguity by adding non-terminals & allowing recursion only on right or left

\[
S \rightarrow S + T \mid T \\
T \rightarrow T * \text{num} \mid \text{num}
\]

- T non-terminal enforces precedence
- Left-recursion: left-associativity

Context Free Grammars

- Context-free grammars allow concise syntax specification of programming languages
- A CFG specifies how to convert token stream to parse tree (if unambiguous!)