CS42/413

Introduction to Compilers
Radu Rugina

Lecture 3: Finite Automata
30 Jan 04

Outline

- Regexp review
- DFAs, NFAs
- DFA simulation
- RE-NFA conversion
- NFA-DFA conversion

Concepts

- **Tokens** = strings of characters representing the lexical units of the programs, such as identifiers, numbers, keywords, operators
 - May represent a unique character string (keywords, operators)
 - May represent multiple strings (identifiers, numbers)
- **Regular expressions** = concise description of tokens
 - A regular expression describes a set of strings
- **Language** denoted by a regular expression = the set of strings that it represents
 - $L(R)$ is the language denoted by regular expression R

Regular Expressions

- If R and S are regular expressions, so are:
 - ε empty string
 - a for any character a
 - RS (concatenation: "R followed by S")
 - $R | S$ (alternation: "R or S")
 - R^* (Kleene star: "zero or more R's")

Regular Expression Extensions

- If R is a regular expressions, so are:
 - $R ? = \varepsilon | R$ (zero or one R)
 - $R+ = RR^*$ (one or more R's)
 - (R) = R (no effect: grouping)
 - $[abc] = a|b|c$ (any of the listed)
 - $[a-e] = a|b|...$ (character ranges)
 - $[^{ab}] = c|d|...$ (anything but the listed chars)

Automatic Lexer Generators

- **Input to lexer generator**: token spec
 - list of regular expressions in priority order
 - associated action for each RE (generates appropriate kind of token, other bookkeeping)
- **Output**: lexer program
 - program that reads an input stream and breaks it up into tokens according to the REs. (Or reports lexical error as "Unexpected character")
Example: JLex

```%
% digits = [0-9]*
% letter = [a-zA-Z]?
% identifier = (letter)([0-9_]*)
% whitespace = [\s\t]+%
% { whitespace /* discard */ }
% { digits } { return new Token(INTEGER.parseInt(yytext())); }
% { if } { return new Token(IF, yytext()); }
% { "while" } { return new Token(WHILE, yytext()); }
% ....
% { identifier } { return new Token(ID, yytext()); }
%
```

How To Use Regular Expressions

- We need a mechanism to determine if an input string `w` belongs to the language denoted by a regular expression `R`.

```
Input string w in the program
Regexp R which describes a token
Yes, if w = token
No, if w ≠ token
```

- Such a mechanism is called an acceptor

Acceptors

- Acceptor = determines if an input string belongs to a language `L`.

```
Input String w → Acceptor
Language L → { Yes, if w ∈ L
               No, if w ∉ L
```

- Finite Automata = acceptor for languages described by regular expressions

Finite Automata

- Informally, finite automata consist of:
 - A finite set of states
 - Transitions between states
 - An initial state (start state)
 - A set of final states (accepting state)

- Two kinds of finite automata:
 - Deterministic finite automata (DFA): the transition from each state is uniquely determined by the current input character
 - Non-deterministic finite automata (NFA): there may be multiple possible choices or some transitions do not depend on the input character

DFA Example

- Finite automaton that accepts the strings in the language denoted by the regular expression `ab*a`

```
A graph

1
a

b
0

A transition table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Error</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Error</td>
<td>Error</td>
</tr>
</tbody>
</table>
```

Simulating the DFA

- Determine if the DFA accepts an input string

```
trans_table[NSTATES][NCHARS]
accept_states[NSTATES]
state = INITIAL
while (state != ERROR) {
    c = input.read();
    if (c == EOF) break;
    state = trans_table[state][c];
} return accept_states[state];
```
RE → Finite automaton?

- Can we build a finite automaton for every regular expression?
- Strategy: build the finite automaton inductively, based on the definition of regular expressions

![Diagram](image1)

RE → Finite automaton?

- Alternation $R \mid S$
- Concatenation: RS

![Diagram](image2)

NFA Definition

- A non-deterministic finite automaton (NFA) is an automaton where the state transitions are such that:
 - There may be ϵ-transitions (transitions which do not consume input characters)
 - There may be multiple transitions from the same state on the same input character

Example: regexp?

![Diagram](image3)

RE → NFA intuition

- $[0-9]^+$

![Diagram](image4)

NFA construction (Thompson)

- NFA only needs one stop state (why?)
- Canonical NFA:

![Diagram](image5)

- Use this canonical form to inductively construct NFAs for regular expressions

Inductive NFA Construction

- RS
- $R \mid S$
- R^*

![Diagram](image6)
DFA vs NFA
- **DFA**: action of automaton on each input symbol is fully determined
 - obvious table-driven implementation
- **NFA**:
 - automaton may have choice on each step
 - automaton accepts a string if there is any way to make choices to arrive at accepting state / every path from start state to an accept state is a string accepted by automaton
 - not obvious how to implement!

Simulating an NFA
- Problem: how to execute NFA?
 - strings accepted are those for which there is some corresponding path from start state to an accept state
- Conclusion: search all paths in graph consistent with the string
- Idea: search paths in parallel
 - Keep track of subset of NFA states that search could be in after seeing string prefix
 - "Multiple fingers" pointing to graph

Example
- Input string: -23
- NFA states:
 - \{0,1\}
 - \{1\}
 - \{2, 3\}
 - \{2, 3\}

NFA-DFA conversion
- Can convert NFA directly to DFA by same approach
- Create one DFA for each distinct subset of NFA states that could arise
- States: \{0,1\}, \{1\}, \{2, 3\}

Algorithm
- For a set \(S \) of states in the NFA, compute
 \(\epsilon\)-closure\((S) = \) set of states reachable from states in \(S \) by \(\epsilon \)-transitions
 \[
 \begin{align*}
 T &= S \\
 \text{Repeat} &\quad T = T \cup \{ s' \mid s' \in T, (s,s') \text{ is } \epsilon\text{-transition} \} \\
 \text{Until} &\quad T \text{ remains unchanged} \\
 \epsilon\text{-closure}(S) &= T
 \end{align*}
 \]
- For a set \(S \) of states in the NFA, compute
 \(\text{DFAEdge}(S,c) = \) the set of states reachable from states in \(S \) by transitions on character \(c \) and \(\epsilon \)-transitions
 \[
 \text{DFAEdge}(S,c) = \epsilon\text{-closure}\{ s \mid s \in S, (s,s') \text{ is } \epsilon\text{-transition} \}
 \]

Algorithm
- DFA-initial-state = \(\epsilon\text{-closure}(\text{NFA-initial-state}) \)
- Worklist = \((\text{DFA-initial-state}) \)
- While (Worklist not empty)
 - Pick state \(S \) from Worklist
 - For each character \(c \)
 - \(S' = \text{DFAEdge}(S,c) \)
 - if \(S' \text{ not in DFA states} \)
 - Add \(S' \) to DFA states and worklist
 - Add an edge \((S, S')\) labeled \(c \) in DFA
- For each DFA-state \(S \)
 - If \(S \) contains an NFA-final state
 - Mark \(S \) as DFA-final-state
Putting the Pieces Together

Regular Expression R --- RE \Rightarrow NFA Conversion --- NFA \Rightarrow DFA Conversion --- DFA Simulation

Input String w ---

Yes, if $w \in L(R)$
No, if $w \notin L(R)$