CS412/413

Introduction to Compilers
Radu Rugina

Lecture 36: Advanced Analyses
28 Apr 03

Dataflow Analysis

Builds the CFG, iterate over basic blocks
¢ Compute information at each program point
— E.g. constants, live variables, etc.

¢ Discussed: intra-procedural analysis
— considers only the computation in the current procedure

o At function calls, assume worst case

— Live variables: all globals/fields live before the call
— Constant folding: globals/fields not constant after call

CS 412/413 Spring 2003 Introduction to Compilers 2

Inter-Procedural Analysis

¢ Precisely analyze interactions between functions/methods

* Same as dataflow analysis, but at each call analyze take into
account the computation in the invoked function

e Examples: inter-procedural constant folding, inter-procedural
register allocation, etc.

g(m) f(n,p)

23 |

CS 412/413 Spring 2003 Introduction to Compilers 3

Issues

¢ Obtain a stack of analyses which corresponds to the
execution stack of the program

¢ Analysis must bind actual parameters to formals
before analyzing the callee
-n=2;m=3;

o Another issue: different functions/methods have
different analysis domains

— E.g. for live variables, analysis domain includes set of
variables local to the current function

— Must change the analysis domain when analysis moves
from caller to callee

CS 412/413 Spring 2003 Introduction to Compilers 4

Multiple Call Sites

¢ Another aspect: a function may be invoked from
multiple call sites

o At different call sites, the analysis is different
— Input context = analysis information at call site

¢ Hence, must re-analyze function in each context

g(m) f(n,p) hQ

f23)] f %,5)

CS 412/413 Spring 2003 Introduction to Compilers 5

Analysis Contexts

¢ The analysis of a function yields an analysis context
which is a pair of:
— an input context: the dataflow information at the entry (or
exit) of the function

— and a corresponding analysis result: the information at
the exit (or entry) of the function, plus the return value

o Useful for memoization: whenever the information
at a call site matches some input context, can reuse
analysis result

CS 412/413 Spring 2003 Introduction to Compilers 6

Example

e Consider inter-procedural constant folding for the following
program:

int a; int f(int m, int n) {
. intt;

void h() { ntt
int b; t=atm;
scanf("%d”, &b); a=a+n;
a=1: return t;
b = f(2,f(b,3)); }

¥

e What are the contexts for function f?
¢ What is the value of b at the end of function h?

CS 412/413 Spring 2003 Introduction to Compilers 7

Recursion

e So far, analysis of recursive procedures doesn't terminate
e Analysis creates an unbounded number of analysis contexts

¢ Need a fixed point algorithm
— Similar to analysis of loops in dataflow analysis

o Approach: for each analysis context, keep a current best
analysis result
— Initialize current best to top
— At recursive call sites use current result
— At return: if result has changed, re-analyze function

CS 412/413 Spring 2003 Introduction to Compilers

Indirect Calls

e Problem: calls for which the invoked function cannot be
precisely determined at compile time
— Function pointers in C/C++
— Dynamically dispatched functions in Java/C++

e Approach:
— Analyze all possibly invoked functions
— Then merge all of the results together

To be precise, must accurately compute the possible targets
of each indirect call

— Function pointers: need points-to information

— Virtual functions: need class hierarchy information

CS 412/413 Spring 2003 Introduction to Compilers

Exponential Blow-up

e Problem: the number of procedure calls in a program may be
exponential in the program size:

int f() { 90); 90);
int g() {h(); h(); »
int h() { kO; kO; ¥
e Call graph = graph describing the call structure

— Nodes are functions, edges are call sites
— Functions close to the leaves get executed many time

« Similarly, inter-procedural analysis may re-analyze functions
many times; hence the analysis becomes expensive

CS 412/413 Spring 2003 Introduction to Compilers

Context-Insensitive Analysis

« So far: different analyses of a function for different input
context (i.e., context-sensitive analysis)

Alternative: context-insensitive analysis
— Merge together all of the input contexts
— Get a conservative input context
— Analyze function for that input
— Use analysis result for all of the call sites

Less precise because it doesn't distinguish between
different input contexts at different call sites
— But more efficient: analyzes functions fewer times

CS 412/413 Spring 2003 Introduction to Compilers

Unrealizable Paths

e Source of imprecision: information may flow from
one call site to another

¢ The results models execution paths that don't
follow the stack discipline, i.e. unrealizable paths

9(m) f(n,p) hO
f2,3) .| f(x,5)
CS 412/413 Spring 2003 Introduction to Compilers 12

Flow-Sensitivity

« Dataflow analysis follows the control flow in the program to
compute the result; hence, it is flow-sensitive

o Alternative: flow-insensitive analysis
— Ignores the control flow!
— Regards a program as a collection of statements

— Assumes that statements can be executed multiple times,
in any order
— More efficient, less precise than flow-sensitive

o Similarity: type information is essentially flow insensitive

— To check types of variables , just check assignments
— Okay if assignments executed in a different order

CS 412/413 Spring 2003 Introduction to Compilers 13

Flow-Insensitive Analysis

¢ Since the control flow is ignored, it is meaningless to
compute a result per program point

e Instead, compute a single result valid for the whole program!
¢ General approach:
— Derive constraints for each statement

— Solve the system of constraints

e Example: points-to analysis -- for each pointer variable v,
want to compute the set Ptr(v) of possible targets of v

CS 412/413 Spring 2003 Introduction to Compilers 14

Algorithm 1

Steensgaard algorithm:
— for each variable v, compute a “pointer type” 1, = Type(v)
— Then Ptr(v) = {u | Tv = *1, and 1, = Type(u) }

To compute types, use a standard type inference
algorithm based on unification

Generated constraints :

X=8&y : ™= *1y
X=y : =Ty
*x=y =1y
x=*y ™= ¥y
CS 412/413 Spring 2003 Introduction to Compilers 15

Example

¢ Consider the following program:

if (cond) {
a = &b;
b = &d;

}else {
a=&c
*a = &e;

K

e Result (valid at all program points):
T T L]

[a—{bcl—{de]

CS 412/413 Spring 2003 Introduction to Compilers 16

Algorithm 2

« Andersen’s algorithm: generate set inclusion constraints for
each statement

x =&y : {y} O Ptr(x)

X=y : Ptr(y) O Ptr(x)

X =*y : Ptr(z) O Ptr(x), for all z O Ptr(y)
*xX =y : Ptr(y) O Ptr(z), for all z O Ptr(x)

Subset relation similar to subtyping

* More precise than Steensgaard, less precise than dataflow
Both algorithms create a spurious edge b - d, as a result of
statements a = &b, *a =d

— However, this sequence never happens during execution

CS 412/413 Spring 2003 Introduction to Compilers 17

Summary

o Inter-procedural analysis:
— Context sensitive
— Context insensitive

¢ Intra-procedural analysis:
— Flow-sensitive (dataflow analysis)
— Flow-insensitive
¢ Flow, context-sensitive: more precise, expensive

¢ Flow, context-insensitive: less precise, efficient

CS 412/413 Spring 2003 Introduction to Compilers 18

