CS412/413

Introduction to Compilers
Radu Rugina

Lecture 34: Exception Handling
23 Apr 03

Exceptions

e Many languages allow exceptions: alternate return
paths from a function

— null pointer, overflow, emptyStack,...
Function either terminates normally or with an
exception

— total functions = robust software

— no encoding error conditions in result

Several different exception models: effect on
implementation efficiency

CS 412/413 Spring 2003 Introduction to Compilers 2

Generating Exceptions

e Java, C++: statement throw E is statement that
terminates exceptionally with exception E

Exception propagates lexically within current function to
nearest enclosing try..catch statement containing it
(exception handler)

Handlers may re-throw exceptions

If not caught within function, propagates dynamically
upward in call chain.

Tricky to implement dynamic exceptions efficiently

CS 412/413  Spring 2003 Introduction to Compilers 3

wn

wn

Declaration of Exceptions

Must a function declare all exceptions it can throw?

Implementer convenience: annoying to declare all exceptions
(overflow, null pointers,...)

vs. Client robustness: want to know all exceptions that can be
generated

Java: must declare “non-error” exceptions

ML: cannot declare exceptions at all (good for quick hacking,
bad for reliable software)

C++: declaration is optional (useless to user, compiler)

CS 412/413  Spring 2003 Introduction to Compilers 4

Naming Exceptions

e Java, C++: exceptions are objects
— name of exception is name of object’s class

— exceptional return distinguished from normal return
Exception m() throws Exception {

if (c) throw new Exception();
else return new Exception(); }

e ML: exceptions are special names with associated data
Exception OutOfRange of int * int
... raise OutOfRange(n,m)

¢ Ada: exceptions are simple tags
SomethingWrong : exception;
raise SomethingWrong;

CS 412/413 Spring 2003 Introduction to Compilers 5

Desired Properties

e Exceptions are for unusual situations and should not
slow down common case:

1. No performance cost when function returns normally

2. Little cost for executing a try..catch block—when
exception is not thrown.

3. Cost of throwing and catching an exception may be
somewhat more expensive than normal termination

¢ Not easy to find such an implementation!

CS 412/413 Spring 2003 Introduction to Compilers 6




Lexical Exception Throws

* Some exceptions can be turned into goto statements; can
identify lexically
try {
if (b) throw new Foo();
elsex =vy;
} catch (Foo f) { ... }

= if (b) { f = new Foo(); goto I1; }

X =y; goto 12;
1 {..}
12:
CS 412/413  Spring 2003 Introduction to Compilers 7

Dynamic Exception Throws

e Cannot always statically determine the exception
handlers...

¢ Need to dynamically find closest enclosing try..catch
that catches the particular exception being thrown

¢ No generally accepted technique! (see absence of
discussion in Appel, Dragon Book)

CS 412/413 Spring 2003 Introduction to Compilers 8

Impl. 1: Extra Return Value

e Return an extra (hidden) boolean from every function
indicating whether function returned normally or not
throw e = return (true, e)
return e = return (false, e)
a=f(b,c) = (exc tl)=f(b,c);
if (exc) goto handle_exc_34;
a=t1;

« No overhead for try..catch blocks

¢ Simple run-time mechanism: just need return (true, ), a
check, and a jump to statically determined handler

* Can express as source-to-source translation

e Drawback = function call overhead: every function call
requires extra parameter, extra check

CS 412/413  Spring 2003 Introduction to Compilers 9

Impl. 2: setjmp/longjmp
» setjmp(buf) saves all regs + stack state into a buffer, returns 0
¢ longjmp(buf) restores state in buf, makes setjmp “return 1”

e Implementation: CatchStack *stk;

try S catch C throw e

{ CatchInfo current;
stk->push(current);
if (!sejmp(current->buf))
S

CatchInfo *current = top(stk);

while (handles(current,e))
current = stk->pop();

current->data = e;

else C; ; _ .
stk->pop(); } longjmp(current->buf);
CS 412/413  Spring 2003 Introduction to Compilers 10

setjmp/longjmp Summary

e Advantages:
— Easy to implement, portable
— No overhead as long as try/catch, throw unused

« Disadvantages:
— Is not thread-safe (stk must be thread-specific)
— Setjmp/longjmp turn off inter-procedural optimizations
and optimizations of heap variables
— There is overhead executing try/catch, try/catch/finally
even if no exception is thrown

— May need to walk up through several enclosing try..catch
blocks until right one is found

CS 412/413 Spring 2003 Introduction to Compilers 1

Impl. 3: PC-Based Techniques

o Idea: map PC values to exception handlers!
¢ Need to map PC values at throw statements and call sites

e Approach one: place markers in the code (implicit mapping)

call foo
.long handlerinfo
add $4, %esp  #normal post-call code

— Extra info after each call about handlers

— Throw statements are also calls (to run-time exception
dispatcher routines)

— If routine not found, walk up stack one frame at a time
(fp known)

— In each frame, check table for matching handlers (PC
known because return address is pushed on stack)

CS 412/413 Spring 2003 Introduction to Compilers 12




Example

‘ 0 {
try 90 A
catch A =>4S1 B
pc catch B =>452
o fp }
g() throws A, B{
9 try h() B
catch B =>,S3
pc }
LLe fp
h() throws A,B {
h throw A e
}
CS 412/413  Spring 2003 Introduction to Compilers 13

PC-Based Techniques, Part2

* Drawback of code markers: return from calls must skip the
inserted info after the call

* Alternative approach: use explicit tables which map PC
addresses to handlers

— Either use hash tables
— Or map ranges of PC addresses
— To find a handler: lookup current PC for matching entry

— Entry contains info about the kind of exception handled
and the actual handler address

— Also need to unwind the stack if no matching handlers
— Need to set up PC map tables

CS 412/413 Spring 2003 Introduction to Compilers 14

PC-Based Techniques

¢ Advantages:
— no cost for try/catch: tables created statically
— no extra cost for function call

— throw - catch is reasonably fast (one table lookup per
stack frame, can be cached)

¢ Disadvantages:
— can't implement as source-to-source translation

— must restore callee-save registers during walk up stack
(can use symbol table info to find them)

— table lookup/stack unwinding more complex if using
Java/C++ exception model (need dynamic type
discrimination mechanism, finalization code in Java,
destructors in C++)

CS 412/413  Spring 2003 Introduction to Compilers 15

Summary

« Several different exception implementations commonly
used

e Extra return value, setjmp/longjmp impose overheads
but can be implemented in C

e PC-based techniques (using static exception tables)
have no overhead except on throw, but require back
end compiler support

CS 412/413  Spring 2003 Introduction to Compilers 16




