CS412/413

Introduction to Compilers
Radu Rugina

Lecture 32: Finishing Code Generation
14 Apr 03

Analysis and Optimizations

o Dataflow analysis reasons about variables and values
Records (objects) consist of a collection of variables (fields) —
analysis must separately keep track of individual fields

Difficult analysis for heap-allocated objects
— Object lifetime outlives procedure lifetime
— Need to perform inter-procedural analysis

o Constructors/destructors: must take into account their effects

CS 412/413 Spring 2003 Introduction to Compilers 2

Class Hierarchy Analysis

Method calls = dynamic, via dispatch vectors

— Overhead of going through DV

— Prohibits function inlining

— Makes other inter-procedural analyses less precise

e Static analysis of dynamic method calls
— Determine possible methods invoked at each call site

— Need to determine principal types of objects at each
program point (Class Hierarchy Analysis)

— If analysis determines object o is always of type T (not
subtype), then it precisely knows the code for 0.foo()

e Optimizations: transform dynamic method calls into static
calls, inline method calls

CS 412/413 Spring 2003 Introduction to Compilers 3

Putting Things Together

o Accessing variables
— Global variables: using their static addresses

— Function arguments and spilled variables (local variables
and temporaries): using frame pointer

— Variables assigned to registers: using their registers

e Instruction selection
— Need to know which variables are in registers and which
variables are spilled on stack
e Register allocation
— No need to allocate a register to a value inside a tile

Code Generation Flow

o Start with low-level IR code

e Build DAG of the computation
— Access global variables using static addresses
— Access function arguments using frame pointer
— Assume all local variables and temporaries are in registers
(assume unbounded number of registers)
¢ Generate abstract assembly code
— Perform tiling of DAG

Register allocation
— Live variable analysis over abstract assembly code
— Assign registers and generate assembly code

CS 412/413 Spring 2003 Introduction to Compilers 5

CS 412/413 Spring 2003 Introduction to Compilers 4
Example
Program Low IR
i tl = x+i
array[int] a SR
function f:(int x) { t= ia+t1
inti; t2 = *t1
o |::> t2 = t2+1
ot 515
y 13 = $a+t3
*3 =12

CS 412/413 Spring 2003 Introduction to Compilers 6

Accesses to Function Arguments

tl = x+i
tl = t1*4
tl = $a+tl
t2 = *t1

t2 =t2+1
t3 = x+i
t3 = t3*4
t3 = $a+t3
*3 =12

CS 412/413 Spring 2003

t4 = ebp+8

t5 = *t4

tl = t5+i

tl =t1*4

tl = $a+tl

t2 = *t1

2 = t2+1
:> t6=ebp+8

t7 = *t6

t3 = t7+i

t3 = t3*4

13 = $a+t3

3 =12

Introduction to Compilers 7

DAG Construction

t4 = ebp+8 stor(\e
t5 = *t4 PN
t1 = t5+i
tl = t1*4 '°|ad !
tl = a+tl +
t2 = *t1 /N
2 = t2+1 I:> LA ¢$a
t6=ebp+8 + 4
7 ="t6 i” 10ad
t3 = t7+i |
t3 = t3%4 s
t3 = a+t3
3 = 12 ebp 8
CS 412/413 Spring 2003 Introduction to Compilers 8

Find tiles
— Maximal Munch

— Dynamic programming

e Temporaries to transfer
values between tiles

¢ No temporaries inside a
of the tiles

CS 412/413 Spring 2003

Tiling

Abstract Assembly Generation

ny

mov 8(%ebp), r3
|:> mov i, r2

Introduction to Compilers 9

CS 412/413 Spring 2003

Abstract Assembly

mov $a, rl

add r3, r2
add $1, (r1,r2,4)

Introduction to Compilers 10

Register Allocation

Abstract Assembly

mov $a, rl

mov 8(%ebp), r3
mov i, r2

add r3, r2

add $1, (r1,r2,4)

€S 412/413 Spring 2003

Live Variables

Register Allocation

Live Variables

{%ebp, i}
mov $a, ri

{%ebp,r1,i}
mov 8(%ebp), r3

{%ebp, i}
mov $a, rl

{%ebp,r1,i}
mov 8(%ebp), r3

{r1, r3, i}
mov i, r2

{r1,r2,r3}
add r3, r2

{r1,r2}
add $1, (r1,r2,4)

&

{r1, r3, i}
|::> mov i, r2

{r1,r2,r3}
add r3, r2

{r1,r2}
add $1, (r1,r2,4)

&

Introduction to Compilers 11

CS 412/413 Spring 2003

e Build interference graph

i —r3
/ N/ N\
%ebp— r1 — r2
o Allocate registers:

eax: r1, ebx: r3
i, r2 spilled to memory

Introduction to Compilers 12

Assembly Code Generation

Abstract Assembly Assembly Code
mov $a, %eax
mov $a, r1 mov 8(%ebp), Y%ebx
mov 8(%ebp), r3 mov —12(%ebp), Yeecx
mov i, r2 |::> mov %ecx, -16(%ebp)
add r3, r2

add %ebx, -16(%ebp)
mov —16(%ebp), %ecx
add $1, (%eax,%ecx,4)

add $1, (r1,r2,4)

Register allocation results:
eax: r1; ebx: r3; i, r2 spilled to memory

CS 412/413 Spring 2003 Introduction to Compilers 13

Other Issues

Translation of function calls / functions
— Pre-call/post-call code
— Prologue/epilogue code

Saved registers

— If caller-save register is live after call, must save it before
call and restore it after call

— If callee-save register is allocated within a procedure,
must save it at procedure entry and restore at exit

¢ Objects
— Dispatch vectors (static)

— Indirect method calls, implicit object parameter
— Accessing object fields

CS 412/413 Spring 2003 Introduction to Compilers 14

Advanced Code Generation

e Modern architectures have complex features

e Compiler must take them into account to
generate good code

e Features:
— Pipeline: several stages for each instruction
— Superscalar: multiple execution units execute
instructions in parallel
— VLIW (very long instruction word): multiple
execution units, machine instruction consists of a set
of instructions for each unit

CS 412/413 Spring 2003 Introduction to Compilers 15

Pipeline

e Example pipeline:
— Fetch
— Decode |Fetch| Dec | Exe |Mem| WB |
— Execute
— Memory access
— Write back

¢ Simultaneously execute stages of different instructions

Instr 1 |Fetch| Dec | Exe |Mem| WB

Instr 2 Fetch| Dec | Exe |[Mem| WB
Instr 3 Fetch| Dec | Exe [Mem| WB
CS 412/413 Spring 2003 Introduction to Compilers 16

Stall the Pipeline

e It is not always possible to pipeline instructions

e Example 1: branch instructions

Branch |Fetch| Dec | Exe [Mem| WB
Target Fetch| Dec | Exe |Mem| WB |

e Example 2: load instructions

Load [Fetch] Dec | Exe [Mem| wB
Use Fetch| Dec | Exe Meml WB|
CS 412/413 Spring 2003 Introduction to Compilers 17

Filling Delay Slots

¢ Some machines have delay slots

« Compiler can generate code to fill these slots and keep the
pipeline busy

e Branch instructions

— Fill delay slot with instruction which dominates the
branch, or which is dominated by the branch

— Compiler must determine that it is safe to do so

Load instructions
— If next instruction uses result, it will get the old value

— Compiler must re-arrange instructions and ensure next
instruction doesn’t depend on results of load

CS 412/413 Spring 2003 Introduction to Compilers 18

Superscalar

e Processor has multiple execution units and can execute
multiple instruction simultaneously

e ... onlyif it is safe to do so!

e Hardware checks dependencies between instructions

e Compiler can help: generate code where consecutive
instructions can execute in parallel
— Again, need to reorder instructions

CS 412/413 Spring 2003 Introduction to Compilers 19

VLIW

e Machine has multiple execution units
¢ Long instruction: contains instructions for each
execution unit

o Compiler must parallelize code: generate a machine
instruction which contains independent instructions for
all the units

¢ If cannot find enough independent instructions, some
units will not be utilized

o Compiler job very similar to the transformation for
superscalar machines

CS 412/413 Spring 2003 Introduction to Compilers 20

Instruction Scheduling

e Instruction scheduling = reorder instructions to improve
the parallel execution of instructions

— Pipeline, superscalar, VLIW
o Essentially, compiler detects parallelism in the code

o Instruction Level Parallelism (ILP) = parallelism
between individual instructions
— Instruction scheduling: reorder instructions to expose ILP

CS 412/413 Spring 2003 Introduction to Compilers 21

Instruction Scheduling

¢ Many techniques for instruction scheduling

e List scheduling
— Build dependence graph
— Schedule an instruction if all its predecessors have been
scheduled
— Many choices at each step: need heuristics

¢ Scheduling across basic blocks
— Move instructions past control flow split/join points
— Move instruction to successor blocks
— Move instructions to predecessor blocks

CS 412/413 Spring 2003 Introduction to Compilers 22

Instruction Scheduling

¢ Another approach: try to increase basic blocks
— Then schedule the large blocks

e Trace scheduling
— Use profiling to find common execution paths
— Combine basic blocks in the trace into a larger block
— Schedule the trace
— Problem: need cleanup code if program leaves trace

e Duplicate basic blocks

¢ Loop unrolling

CS 412/413 Spring 2003 Introduction to Compilers 23

Instruction Scheduling

e Can also schedule across different iterations of loops

¢ Software pipelining
— Overlap loop iterations to fill delay slots
— If latency between instructions i1 and i2 in some loop
iteration, change loop so that i2 uses results of i1 from
previous iteration
— Need to generate additional code before and after the loop

CS 412/413 Spring 2003 Introduction to Compilers 24

CS 412/413 Spring 2003

Where We Are

Source Program

Assembly Code

Introduction to Compilers

25

