CS412/413

Introduction to Compilers
Radu Rugina

Lecture 26: Loop Optimizations
31 Mar 03

Loop optimizations

¢ Now we know which are the loops

¢ Next: optimize these loops
— Loop invariant code motion
— Strength reduction of induction variables
— Induction variable elimination

CS 412/413 Spring 2003 Introduction to Compilers 2

Loop Invariant Code Motion
Idea: if a computation produces same result in all loop
iterations, move it out of the loop
Example: for (i=0; i<10; i++)

afi] = 10%i + x*x;

Expression x*x produces the same result in each
iteration; move it of the loop:

Loop Invariant Computation

e Aninstruction a = b OP c is loop-invariant if each
operand is:
— Constant, or
— Has all definitions outside the loop, or
— Has exactly one definition, and that is a loop-invariant
computation

e Reaching definitions analysis computes all the
definitions of x and y which may reach t = x OP y

CS 412/413 Spring 2003 Introduction to Compilers 4

t = x*x;
for (i=0; i<10; i++)
ali] = 10%i + t;
CS 412/413 Spring 2003 Introduction to Compilers 3
Algorithm
INV =[]
Repeat

for each instruction i [J INV
if operands are constants, or
have definitions outside the loop, or
have exactly one definition d [INV
then INV = INV U {i}
Until no changes in INV

CS 412/413 Spring 2003 Introduction to Compilers

Code Motion

¢ Next: move loop-invariant code out of the loop
e Suppose a = b OP c is loop-invariant
¢ We want to hoist it out of the loop

e Code motion of a definition d: a = b OP c in pre-header
is valid if:
1. Definition d dominates all loop exits where a is live
2. There is no other definition of a in loop
3. All uses of a in loop can only be reached from
definition d

CS 412/413 Spring 2003 Introduction to Compilers 6

Other Issues

¢ Preserve dependencies between loop-invariant instructions
when hoisting code out of the loop

for (i=0; i<N; i++) { X =y+z;

X = y+z; t = x*x;

afi] = 10%i + x*x; for(i=0; i<N; i++)
¥ afi] = 10*i + t;

¢ Nested loops: apply loop invariant code motion algorithm
multiple times

tl = x*x;
for (i=0; i<N; i++) for (i=0; i<N; i++) {
for (3=0; j<M; j++) t2 = t1+ 10%i;

afill[j] = x*x + 10*i + 100*j; for (j=0; j<M; j++)
alillj] = t2 + 100%j; »

CS 412/413 Spring 2003 Introduction to Compilers 7

Induction Variables

¢ An induction variable is a variable in a loop,
whose value is a function of the loop iteration
number v = f(i)

e In compilers, this a linear function:
f(i)=c*i+d

e Observation: linear combinations of linear
functions are linear functions

— Consequence: linear combinations of induction
variables are induction variables

CS 412/413 Spring 2003 Introduction to Compilers 8

Induction Variables

¢ Two categories of induction variables

e Basic induction variables: only incremented in loop body
i=i+c
where cis a constant (positive or negative)

« Derived induction variables: expressed as a linear function of
an induction variable

k=c*+d
where:
- either j is basic induction variable
- or j is derived induction variable in the family of i and:
1. No definition of j outside the loop reaches definition of k
2. i is not defined between the definitions of j and k

CS 412/413 Spring 2003 Introduction to Compilers 9

Families of Induction Variables

e Each basic induction variable defines a family of
induction variables
— Each variable in the family of i is a linear function of i

e A variable k is in the family of basic variable i if:
1. k = i (the basic variable itself)
2. k is a linear function of other variables in the family of i:
k = c*j+d, where jOFamily(i)

e A triple <i, a, b> denotes an induction variable k in the

family of i such that: k = i*a + b
— Triple for basic variable i is <i, 1, 0>

CS 412/413 Spring 2003 Introduction to Compilers 10

Dataflow Analysis Formulation

¢ Detection of induction variables: can formulate problem using
the dataflow analysis framework

— Analyze loop sub-graph, except the back edge
— Analysis is similar to constant folding

¢ Dataflow information: a function F that assigns a triple to
each variable:
F(k) = <i,a,b>, if k is an induction variable in family of i
F(k) = L : kis not an induction variable

F(k) = T : don't know if k is an induction variable

CS 412/413 Spring 2003 Introduction to Compilers 11

Dataflow Analysis Formulation

e Meet operation: if F1 and F2 are two functions, then:
(F1 M F2)(v) = <i,a,b> if F1(k)=F2(k)=<i,a,b>
1, otherwise
(in other words, use a flat lattice)

o Initialization:
— Detect all basic induction variables
— At loop header: F(i) = <i,1,0> for each basic variable i

e Transfer function:
— consider F is information before instruction I
— Compute information F’ after I

CS 412/413 Spring 2003 Introduction to Compilers 12

Dataflow Analysis Formulation

« For a definition k = j+c, where k is not basic induction variable
F'(v) = <i, a, b+c>, if v=k and F(j)=<i,a,b>
F'(v) = F(v), otherwise

* For a definition k = j*c, where k is not basic induction variable
F'(v) = <i, a*c, b*c>, if v=k and F(j)=<i,a,b>
F'(v) = F(v), otherwise

« For any other instruction and any variable k in def[I] :
F(v) = L, if F(v) = <k, a, b>
F'(v) = F(v), otherwise

CS 412/413 Spring 2003 Introduction to Compilers 13

Strength Reduction

* Basic idea: replace expensive operations (multiplications) with
cheaper ones (additions) in definitions of induction variables

s = 3%i+1;
while (i<10) { while (i<10) {
j=..; /] <i3,1> j=s;
afj] = a[jl -2; afj] = a[j] -2;
i=i+2; i=i+2;
3} S= 5+6;
b

* Benefit: cheaper to compute s = s+6 than j = 3*i
— s =s+6 requires an addition
— j = 3*i requires a multiplication

CS 412/413 Spring 2003 Introduction to Compilers 14

General Algorithm

o Algorithm:

For each induction variable j with triple <i,a,b>
whose definition involves multiplication:
1. create a new variable s
2. replace definition of j with j=s
3. immediately after i=i+c, insert s = s+a*c
(here a*c is constant)
4. insert s = a*i+b into preheader

o Correctness:
this transformation maintains the invariant that s = a*i+b

CS 412/413 Spring 2003 Introduction to Compilers 15

Strength Reduction

» Gives opportunities for copy propagation, dead code
elimination

s = 3*%i+1; s = 3*i+1;

while (i<10) { while (i<10) {
j=s;
afjl = a[jl1-2; afs] = a[s] -2;
i=i+2; i=i+2;
s= s+6; S= 5+6;

¥ }

CS 412/413 Spring 2003 Introduction to Compilers 16

Induction Variable Elimination

e Idea: eliminate each basic induction variable whose only uses
are in loop test conditions and in their own definitions i = i+c

- rewrite loop test to eliminate induction variable

s = 3*i+1;

while (i<10) {
a[s] = afs] -2;
i=i+2;
s= s+6;

}

e When are induction variables used only in loop tests?
— Usually, after strength reduction

— Use algorithm from strength reduction even if definitions
of induction variables don't involve multiplications

CS 412/413 Spring 2003 Introduction to Compilers 17

Induction Variable Elimination

* Rewrite test condition using derived induction variables

« Remove definition of basic induction variables (if not used
after the loop)

s = 3*i+1; s = 3*i+1;
while (i<10) { while (s<31) {
a[s] = a[s] -2; |:> a[s] = a[s] -2;
i=i+2; s= 5+6;
S= 5+6; ¥
¥
CS 412/413 Spring 2003 Introduction to Compilers 18

Induction Variable Elimination

For each basic induction variable i whose only uses are
— The test condition i < u
— The definition of i: i =i+ ¢

For each derived induction variable k in its family,
with triple <i,c,d>
Replace test condition i<u with k < c*u+d

Remove definition i = i+c if i is not live on loop exit

CS 412/413 Spring 2003 Introduction to Compilers 19

Where We Are

* Defined dataflow analysis framework

e Used it for several analyses
— Live variables
— Available expressions
— Reaching definitions
— Constant folding

e Loop transformations
— Loop invariant code motion
— Induction variables

e Next:
— Pointer alias analysis

CS 412/413 Spring 2003 Introduction to Compilers 20

Pointer Alias Analysis

¢ Most languages use variables containing addresses

— E.g. pointers (C,C++), references (Java), call-by-
reference parameters (Pascal, C++, Fortran)

o Pointer aliases: multiple names for the same memory
location, which occur when dereferencing variables that hold
memory addresses

e Problem:
— Don't know what variables read and written by accesses
via pointer aliases (e.g. *p=y, x=*p, p.f=y, x=p.f, etc.)
— Need to know accessed variables to compute dataflow
information after each instruction

CS 412/413 Spring 2003 Introduction to Compilers 21

Pointer Alias Analysis

Worst case scenarios

— *p =y may write any memory location

— X = *p may read any memory location

e Such assumptions may affect the precision of other analyses

Examplel: Live variables
before any instruction x = *p, all the variables may be live

Example 2: Constant folding
a=1,b=2;*p=0;c=a+b;
e c = 3 at the end of code only if *p is not an alias for a or b!

¢ Conclusion: precision of result for all other analyses depends
on the amount of alias information available

- hence, it is a fundamental analysis

CS 412/413 Spring 2003 Introduction to Compilers 22

Alias Analysis Problem

e Goal: for each variable v that may hold an address,
compute the set Ptr(v) of possible targets of v
— Ptr(v) is a set of variables (or objects)
— Ptr(v) includes stack- and heap-allocated variables (objects)

o Is a“may” analysis: if x [J Ptr(v), then v may hold the
address of x in some execution of the program

¢ No alias information: for each variable v, Ptr(v) =V,
where V is the set of all variables in the program

CS 412/413 Spring 2003 Introduction to Compilers 23

Simple Alias Analyses

¢ Address-taken analysis:
— Consider AT = set of variables whose addresses are taken
— Then, Ptr(v) = AT, for each pointer variable v

— Addresses of heap variables are always taken at allocation
sites (e.g. x = new int[2], x=malloc(8))
— Hence AT includes all heap variables

e Type-based alias analysis:

— If v is a pointer (or reference) to type T, then Ptr(v) is the
set of all variables of type T

— Example: p.f and q.f can be aliases only if p and q are
references to objects of the same type

— Works only for strongly-typed languages

CS 412/413 Spring 2003 Introduction to Compilers 24

Dataflow Alias Analysis

« Dataflow analysis: for each variable v, compute points-
to set Ptr(v) at each program point

« Dataflow information: set Ptr(v) for each variable v
— Can be represented as a graph G < 2 VxV
— Nodes = V (program variables)
— There is an edge v-u if u [J Ptr(v)

Ptr(x) = {y} ﬂ
Ptr(y) = {z,t}

CS 412/413 Spring 2003 Introduction to Compilers 25

Dataflow Alias Analysis

o Dataflow Lattice: (2 V*VY, 2)
— V x Vis set of all possible points-to relations
— “may” analysis: top element is (I, meet operation is U

o Transfer functions: use standard dataflow transfer functions:
out[I] = (in[I]-kill[I]) U gen[I]

p =addrq killl]={p} x V. gen[I]={(p,a)}

pP=q kill[T]={p} x V. gen[I]={p} x Ptr(q)
p=%*q killlT]={p} x V. gen[I]={p} x Ptr(Ptr(q))
*p=q kill[I]= ... gen[I]=Ptr(p) x Ptr(q)

For all other instruction, kill[I] = {}, gen[I] = {}

« Transfer functions are monotonic, but not distributive!

CS 412/413 Spring 2003 Introduction to Compilers 26

Alias Analysis Example

Points-to
Program F
g CFG Graph
Xx=&a (at the end of program)
x=8a; y=8&b
y=8&b; c=&i
c=&i; if(i)
if(i) x=y; _
*x=C; x=y
*x=C
CS 412/413 Spring 2003 Introduction to Compilers 27

Alias Analysis Uses

e Once alias information is available, use it in other
dataflow analyses

e Example: Live variable analysis

Use alias information to compute use[I] and def[I] for
load and store statements:

x=[y] use[l] ={y}UPtr(y) def[l]={x}
[x]=y use[l] ={xy} def[I]=Ptr(x)

CS 412/413 Spring 2003 Introduction to Compilers 28

