Problem 4: Constant Folding

- Compute constant variables at each program point
- Constant variable = variable having a constant value on all program executions
- Dataflow information: sets of constant values
- Example: \(x=2, y=3 \) at program point \(p \)
- Is a forward analysis
- Let \(V \) = set of all variables in the program, \(\text{ivar} = |V| \)
- Let \(N \) = set of integer constants
- Use a lattice over the set \(V \times N \)
- Construct the lattice starting from a lattice for \(N \)

Problem: \((N, \leq) \) is not a complete lattice!
... why?

Constant Folding Lattice

- \text{Second try}: lattice \((N \cup \{ \bot, \top \}, \leq) \)
 - Where \(\bot \leq n \), for all \(n \in N \)
 - And \(n \leq \top \), for all \(n \in N \)
 - Is complete!

- Meaning:
 - \(v = \top \): don't know if \(v \) is constant
 - \(v = \bot \): \(v \) is not constant

- Note: meet of any two distinct numbers is \(\bot \)!

Constant Folding Lattice

- Denote \(N^* = N \cup \{ \top \} \)
- Use flat lattice \(L = (N^*, \sqsubseteq) \)
- Constant folding lattice: \(L^* = (V \rightarrow N^*, \sqsubseteq_C) \)
- Where partial order on \(V \rightarrow N^* \) is defined as:
 \[X \sqsubseteq_C Y \text{ iff for each variable } v: X(v) \sqsubseteq Y(v) \]
- Can represent a function in \(V \rightarrow N^* \) as a set of assignments: \(\{ (v1=c1), (v2=c2), ..., (vn=cn) \} \)
CF: Transfer Functions

- Transfer function for instruction I:
 \[F_I(x) = (x - \text{kill}[I]) \cup \text{gen}[I] \]
 where:
 - kill[I] = constants "killed" by I
 - gen[I] = constants "generated" by I
- \(X[v] = c \in \mathbb{N} \) if \(\{v = c\} \in X \)
- If \(I \) is \(v = c \) (constant):
 \(\text{gen}[I] = \{v = c\} \) \(\text{kill}[I] = \langle v \rangle \times \mathbb{N} \)
- If \(I \) is \(u + w \):
 \(\text{gen}[I] = \langle v = e \rangle \) \(\text{kill}[I] = \langle v \rangle \times \mathbb{N} \)
 where \(e = X[u] + X[w] \)
 - if \(X[u] \) and \(X[w] \) are not \(\top, \bot \)
 - \(e = \top \) if \(X[u] = \bot \) or \(X[w] = \bot \)
 - \(e = \bot \) if \(X[u] = \top \) and \(X[w] = \top \)

CF: Distributivity

- Example:
 \[\{x = 2, y = 3, z = \top\} \rightarrow \begin{cases} x = 3, y = 2, z = \top \\quad \text{if } z = x + y \end{cases} \]
- At join point, apply meet operator
- Then use transfer function for \(z = x + y \)

Classification of Analyses

- Forward analyses: information flows from
 - CFG entry block to CFG exit block
 - Input of each block to its output
 - Output of each block to input of its successor blocks
 - Examples: available expressions, reaching definitions, constant folding
- Backward analyses: information flows from
 - CFG exit block to entry block
 - Output of each block to its input
 - Input of each block to output of its predecessor blocks
 - Example: live variable analysis
Another Classification

- “may” analyses:
 - information describes a property that MAY hold in SOME executions of the program
 - Usually: \(\cap \neq \cup, T \neq \emptyset \)
 - Hence, initialize info to empty sets
 - Examples: live variable analysis, reaching definitions

- “must” analyses:
 - information describes a property that MUST hold in ALL executions of the program
 - Usually: \(\cap = \cap, T = S \)
 - Hence, initialize info to the whole set
 - Examples: available expressions

Control-Flow Analysis

- Goal: identify loops in the control flow graph

- A loop in the CFG:
 - Is a set of CFG nodes (basic blocks)
 - Has a loop header such that control to all nodes in the loop always goes through the header
 - Has a back edge from one of its nodes to the header

Program Loops

- Loop = a computation repeatedly executed until a terminating condition is reached

- High-level loop constructs:
 - While loop: \(\text{while}(E) \ S \)
 - Do-while loop: \(\text{do } S \text{ while}(E) \)
 - For loop: \(\text{for}(i=1, i\leq n, i+=c) \ S \)

- Why are loops important:
 - Most of the execution time is spent in loops
 - Typically: 90/10 rule, 10% code is a loop

 Therefore, loops are important targets of optimizations

Detecting Loops

- Need to identify loops in the program
 - Easy to detect loops in high-level constructs
 - Difficult to detect loops in low-level code or in general control-flow graphs

- Examples where loop detection is difficult:
 - Languages with unstructured “goto” constructs: structure of high-level loop constructs may be destroyed
 - Optimizing Java bytecodes (without high-level source program): only low-level code is available

Dominator

- Use concept of dominators to identify loops:
 - CFG node d dominates CFG node n if all the paths from entry node to n go through d

- Intuition:
 - Header of a loop dominates all nodes in loop body
 - Back edges = edges whose heads dominate their tails
 - Loop identification = back edge identification
Immediate Dominators

- **Properties:**
 1. CFG entry node n_0 in dominates all CFG nodes
 2. If d_1 and d_2 dominate n, then either
 - d_1 dominates d_2, or
 - d_2 dominates d_1

- **Immediate dominator idom(n) of node n:**
 - $idom(n) \neq n$
 - $idom(n)$ dominates n
 - If m dominates n, then m dominates $idom(n)$

- Immediate dominator $idom(n)$ exists and is unique because of properties 1 and 2

Dominator Tree

- Build a dominator tree as follows:
 - Root is CFG entry node n_0
 - m is child of node n iff $n=idom(m)$

- **Example:**

Computing Dominators

- Formulate problem as a system of constraints:
 - $\text{dom}(n)$ is set of nodes who dominate n
 - $\text{dom}(n) = \{ n \}$
 - $\text{dom}(n) = \cap \{ \text{dom}(m) \mid m \in \text{pred}(n) \}$

- Can also formulate problem in the dataflow framework
 - What is the dataflow information?
 - What is the lattice?
 - What are the transfer functions?
 - Use dataflow analysis to compute dominators

Natural Loops

- Back edge: edge $n \rightarrow h$ such that h dominates n

- **Natural loop** of a back edge $n \rightarrow h$:
 - h is loop header
 - Loop nodes is set of all nodes that can reach n without going through h

- **Algorithm** to identify natural loops in CFG:
 - Compute dominator relation
 - Identify back edges
 - Compute the loop for each back edge

Disjoint and Nested Loops

- **Property:** for any two natural loops in the flow graph, one of the following is true:
 1. They are disjoint
 2. They are nested
 3. They have the same header

- **Eliminate alternative 3:** if two loops have the same header and none is nested in the other, combine all nodes into a single loop

Loop Preheader

- Several optimizations add code before header
- Insert a new basic block (called preheader) in the CFG to hold this code