CS412/413

Introduction to Compilers
Radu Rugina

Lecture 25: Control Flow Analysis
28 Mar 03

Problem 4: Constant Folding

e Compute constant variables at each program point

« Constant variable = variable having a constant value on all
program executions

« Dataflow information: sets of constant values
e Example: {x=2, y=3} at program point p
Is a forward analysis

Let V = set of all variables in the program, nvar = |V|
Let N = set of integer constants

Use a lattice over the set V x N

Construct the lattice starting from a lattice for N

Problem: (N, <) is not a complete lattice!
... why?

CS 412/413 Spring 2003 Introduction to Compilers

Constant Folding Lattice

e Second try: lattice (NU{T,L}, <) T
— Where L <n, forall nON |

— And n<T, forall nON %

— Is complete! }

0

o Meaning: 4
— v=T: don't know if v is constant _'2

— v=_1: vis not constant]

T

1

CS 412/413 Spring 2003 Introduction to Compilers

Constant Folding Lattice

-

e Second try: lattice (NU{T,L}, <)
— Where L <n, forall nON
—And n<T, forall nON
— Is complete!

e Problem:

— Is incorrect for constant folding
— Meet of two constants c#d is min(c,d)

— Meet of different constants should be L

L

« Another problem: has infinite height ... 1

CS 412/413 Spring 2003 Introduction to Compilers

Constant Folding Lattice
¢ Solution: flat lattice L = (NU{T, L}, &)
— Where L £ n, forall nON

— And nC T, forall nON
— And distinct integer constants are not comparable

T

7N
0 1 2

2 A1

~\I
1

* Note: meet of any two distinct numbers is L !

CS 412/413 Spring 2003 Introduction to Compilers

Constant Folding Lattice

e Denote N*=Nu{T,L}
Use flat lattice L=(N*, =)

Constant folding lattice: L'=(V — N*, =¢)
e Where partial order on V - N* is defined as:
X Ec Y iff for each variable v: X(v) = Y(v)

e Can represent a function in V - N* as a set of
assignments: { {vl=cl}, {v2=c2}, ..., {vn=cn} }

CS 412/413 Spring 2003 Introduction to Compilers 6

CF: Transfer Functions

Transfer function for instruction I:

Fi(X) = (X =Kill[I]) U gen[I]
where:

kill[I] = constants “killed” by I

gen[I] = constants “generated” by I
o X[v]=cON*if{v=c} OX

e IfTisv =c(constant): gen[I] = {v=c} Kkill[I] = {v} x N*
o Iflisv=u+w: gen[I] = {v=e} Kill[I] = {v} x N*
where e = X[u] + X[w], if X[u] and X[w] are not T,L

e=1,if X[u]= L orX[w] = L
e=T,ifX[u] =T and X[w] = T

CS 412/413 Spring 2003 Introduction to Compilers 7

CF: Transfer Functions
* Transfer function for instruction I:
F(X) = (X=Kill[I]) U gen[I]
e Here gen[I] is not constant, it depends on X
* However transfer functions are monotonic (easy to prove)

e ... but are transfer functions distributive?

CS 412/413 Spring 2003 Introduction to Compilers 8

CF: Distributivity

e Example:

X=2
{x=2,y=3,2=T}-lY =3 ~{x=3,y=2,z=T}

—A{x=7y=?2=7}
H

—{x=?,y=?,2=?}

e At join point, apply meet operator
o Then use transfer function for z=x+y

CS 412/413 Spring 2003 Introduction to Compilers 9

CF: Distributivity

e Example:

X=2
{x=2,y=3,2=T}-1¥ 33

T {X: J~ly: J~IZ: T}

—{x=L1l,y=1,z=1}

- {x=3,y=2,z=T}

o Dataflow result (MFP) at the end: {x=_1,y=1,z=1}
* MOP solution at the end: {x=_1,y=1,z=5} !

CS 412/413 Spring 2003 Introduction to Compilers 10

CF: Distributivity

e Example:

X X
{x=2,y=3,z=T} Y = Y= 2] {x=3,y=2,z=T}

——A{x=1,y=1,2=T}
H

—{x=1,y=1,z=1}
e Reason for MOP # MFP:
transfer function F of z=x+y is not distributive!
F(X1 1 X2) # F(X1) M F(X2)
where X1 = {x=2,y=3,z=T} and X2 = {x=3,y=2,z=T}

CS 412/413 Spring 2003 Introduction to Compilers 11

Classification of Analyses

e Forward analyses: information flows from
— CFG entry block to CFG exit block
— Input of each block to its output
— Output of each block to input of its successor blocks

— Examples: available expressions, reaching definitions,
constant folding

e Backward analyses: information flows from
— CFG exit block to entry block
— Output of each block to its input
— Input of each block to output of its predecessor blocks
— Example: live variable analysis

CS 412/413 Spring 2003 Introduction to Compilers 12

Another Classification

e “may” analyses:

— information describes a property that MAY hold in SOME
executions of the program

— Usually: M=u, T=0
— Hence, initialize info to empty sets
— Examples: live variable analysis, reaching definitions

e “must” analyses:

— information describes a property that MUST hold in ALL
executions of the program

— Usually:r=nN, T=S
— Hence, initialize info to the whole set
— Examples: available expressions

CS 412/413 Spring 2003 Introduction to Compilers 13

Next

¢ Control flow analysis
— Detect loops in control flow graphs
— Dominators

¢ Loop optimizations
— Code motion
— Strength reduction for induction variables
— Induction variable elimination

CS 412/413 Spring 2003 Introduction to Compilers 14

Program Loops

e Loop = a computation repeatedly executed until a
terminating condition is reached

« High-level loop constructs:
— While loop: while(E) S
— Do-while loop: do S while(E)
— For loop: for(i=1, i<=u, i+=c) S

e Why are loops important:
— Most of the execution time is spent in loops
— Typically: 90/10 rule, 10% code is a loop

e Therefore, loops are important targets of optimizations

CS 412/413 Spring 2003 Introduction to Compilers 15

Detecting Loops

¢ Need to identify loops in the program
— Easy to detect loops in high-level constructs

— Difficult to detect loops in low-level code or in general
control-flow graphs

e Examples where loop detection is difficult:

— Languages with unstructured “goto” constructs: structure
of high-level loop constructs may be destroyed

— Optimizing Java bytecodes (without high-level source
program): only low-level code is available

CS 412/413 Spring 2003 Introduction to Compilers 16

Control-Flow Analysis
e Goal: identify loops in the control flow graph

¢ Aloop in the CFG:
— Is a set of CFG nodes (basic blocks)
— Has a loop header such that
control to all nodes in the loop
always goes through the header
— Has a back edge from one of its
nodes to the header

CS 412/413 Spring 2003 Introduction to Compilers 17

Dominators

e Use concept of dominators to identify loops:

“CFG node d dominates CFG node n if all the paths from
entry node to n go through d”

1 dominates 2, 3, 4
2 doesn’t dominate 4
3 doesn’t dominate 4

o Intuition:
— Header of a loop dominates all nodes in loop body
— Back edges = edges whose heads dominate their tails
— Loop identification = back edge identification

CS 412/413 Spring 2003 Introduction to Compilers 18

Immediate Dominators

¢ Properties:
1. CFG entry node n, in dominates all CFG nodes
2. If d1 and d2 dominate n, then either
— d1 dominates d2, or
— d2 dominates d1

¢ Immediate dominator idom(n) of node n:
— idom(n) #n
— idom(n) dominates n
— If m dominates n, then m dominates idom(n)

e Immediate dominator idom(n) exists and is unique
because of properties 1 and 2

CS 412/413 Spring 2003 Introduction to Compilers 19

Dominator Tree

¢ Build a dominator tree as follows:
— Root is CFG entry node n,
— mis child of node n iff n=idom(m)

e Example:

CS 412/413 Spring 2003 Introduction to Compilers 20

Computing Dominators

e Formulate problem as a system of constraints:
— dom(n) is set of nodes who dominate n
= dom(ng)= {ny}
— dom(n) = N {dom(m) | m [pred(n) }

¢ Can also formulate problem in the dataflow
framework
— What is the dataflow information?
— What is the lattice?
— What are the transfer functions?
— Use dataflow analysis to compute dominators

CS 412/413 Spring 2003 Introduction to Compilers 21

Natural Loops

e Back edge: edge n - h such that h dominates n
¢ Natural loop of a back edge n-h:
— h is loop header

— Loop nodes is set of all nodes that can reach n
without going through h

¢ Algorithm to identify natural loops in CFG:
— Compute dominator relation
— Identify back edges
— Compute the loop for each back edge

CS 412/413 Spring 2003 Introduction to Compilers 22

Disjoint and Nested Loops

o Property: for any two natural loops in the flow graph,
one of the following is true:

1. They are disjoint
2. They are nested
3. They have the same header

e Eliminate alternative 3: if two loops have the same
header and none is nested in the other, combine all
nodes into a single loop

1
.v- Two loops: {1,2} and {1,3}
Combine into one loop: {1,2,3}
CS 412/413 Spring 2003 Introduction to Compilers 23

Loop Preheader

¢ Several optimizations add code before header

¢ Insert a new basic block (called preheader) in
the CFG to hold this code

CS 412/413 Spring 2003 Introduction to Compilers 24

