Problem 1: Live Variables
- Compute live variables at each program point
- Live variable = variable whose value may be used later, in some execution of the program
- Dataflow information: sets of live variables
- Example: variables \(x, z \) may be live at program point \(p \)
- Is a backward analysis
- Let \(V \) = set of all variables in the program
- Lattice \((L, \subseteq) \), where:
 - \(L = 2^V \) (power set of \(V \), i.e. set of all subsets of \(V \))
 - Partial order \(\subseteq \) is set inclusion:
 \[S_1 \subseteq S_2 \text{ if } S_1 \supseteq S_2 \]

LV: The Lattice
- Consider set of variables \(V = \{ x, y, z \} \)
- Partial order: \(\sqsubseteq \)
- Set \(V \) is finite implies lattice has finite height
- Meet operator: \(\sqcap \)
 (set union: \(\text{out}(B) \) is union of \(\text{in}(B') \), for all \(B' \in \text{succ}(B) \))
- Top element: \(\emptyset \)
 (empty set)
- Smaller sets of live variables = more precise analysis
- All variables may be live = least precise

LV: Dataflow Equations
- Equations:
 \[\text{in}(B) = F_B(\text{out}(B)), \text{ for all } B \]
 \[\text{out}(B) = \cup \{ \text{in}(B') | B' \in \text{succ}(B) \}, \text{ for all } B \]
 \[\text{out}(B_0) = X_0 \]
- Meaning of union meet operator:
 "A variable is live at the end of a basic block \(B \) if it is live at the beginning of one of its successor blocks"

LV: Transfer Functions
- Transfer functions for basic blocks are composition of transfer functions of instructions in the block
- Define transfer functions for instructions
- General form of transfer functions:
 \[F_B(X) = (X - \text{def}[1]) \cup \text{use}[1] \]
 where:
 \(\text{def}[1] \) = set of variables defined (written) by \(I \)
 \(\text{use}[1] \) = set of variables used (read) by \(I \)
- Meaning of transfer functions:
 "Variables live before instruction \(I \) include: 1) variables live after \(I \), not written by \(I \), and 2) variables used by \(I \)"
LV: Transfer Functions

- Define def/use for each type of instruction
 - if \(x = y \) if OP \(z \): \(\text{use}[I] = \{y, z\} \) \(\text{def}[I] = \{x\} \)
 - if \(x = \text{OP} y \): \(\text{use}[I] = \{y\} \) \(\text{def}[I] = \{x\} \)
 - if \(x = y \) if \(z \): \(\text{use}[I] = \{z\} \) \(\text{def}[I] = \{x\} \)
 - if \(x = \text{addr} y \): \(\text{use}[I] = \{} \) \(\text{def}[I] = \{x\} \)
 - if \(\text{if} (x) \): \(\text{use}[I] = \{x\} \) \(\text{def}[I] = \{} \)
 - if \(\text{return} x \): \(\text{use}[I] = \{x\} \) \(\text{def}[I] = \{} \)
 - if \(x = f(y_1, \ldots, y_n) \): \(\text{use}[I] = \{y_1, \ldots, y_n\} \) \(\text{def}[I] = \{x\} \)
- Transfer functions \(F_x(X) = (X - \text{def}[I]) \cup \text{use}[I] \)
- For each \(F_x \), \(\text{def}[I] \) and \(\text{use}[I] \) are constants; they don't depend on input information \(X \)

LV: Monotonicity

- Are transfer functions \(F_x(X) = (X - \text{def}[I]) \cup \text{use}[I] \) monotonic?
- Because \(\text{def}[I] \) is constant, \(X - \text{def}[I] \) is monotonic:
 - \(X_1 \supset X_2 \) implies \(X_1 - \text{def}[I] \supset X_2 - \text{def}[I] \)
- Because \(\text{use}[I] \) is constant, \(Y \cup \text{use}[I] \) is monotonic:
 - \(Y_1 \supset Y_2 \) implies \(Y_1 \cup \text{use}[I] \supset Y_2 \cup \text{use}[I] \)
- Put pieces together: \(F_x(X) \) is monotonic
 - \(X_1 \supset X_2 \) implies
 - \((X_1 - \text{def}[I]) \cup \text{use}[I] \supset (X_2 - \text{def}[I]) \cup \text{use}[I] \)

LV: Distributivity

- Are transfer functions \(F_x(X) = (X - \text{def}[I]) \cup \text{use}[I] \) distributive?
- Since \(\text{def}[I] \) is constant: \(X - \text{def}[I] \) is distributive:
 - \((X_1 \cup X_2) - \text{def}[I] = (X_1 - \text{def}[I]) \cup (X_2 - \text{def}[I]) \)
 - Because: \((a \cup b) - c = (a - c) \cup (b - c) \)
- Since \(\text{use}[I] \) is constant: \(Y \cup \text{use}[I] \) is distributive:
 - \((Y_1 \cup Y_2) \cup \text{use}[I] = (Y_1 \cup \text{use}[I]) \cup (Y_2 \cup \text{use}[I]) \)
 - Because: \((a \cup b) \cup c = (a \cup c) \cup (b \cup c) \)
- Put pieces together: \(F_x(X) \) is distributive
 - \(F_x(X_1 \cup X_2) = F_x(X_1) \cup F_x(X_2) \)

Live Variables: Summary

- Lattice: \((2^E, \supseteq)\); has finite height
- Meet is set union, top is empty set
- Is a backward dataflow analysis
- Dataflow equations:
 - \(\text{in} (b) = F_x(\text{out}(b)) \), for all \(B \)
 - \(\text{out}(b) = \{e(b') | b' \in \text{succ}(b)\} \), for all \(B \)
 - \(\text{out}(b_0) = X_0 \)
- Transfer functions: \(F_x(X) = (X - \text{def}[I]) \cup \text{use}[I] \)
 - are monotonic and distributive
- Iterative solving of dataflow equation:
 - terminates
 - computes MIP solution

Problem 2: Available Expressions

- Compute available expressions at each program point
- Available expression = expression evaluated in all program executions, and its value would be the same if re-evaluated
- Is similar to available copies discussed earlier
- Dataflow information: sets of available expressions
- Example: expressions \(\{x+y, y-z\} \) are available at point \(p \)
- Is a forward analysis
- Let \(E \) = set of all expressions in the program
- Lattice \((L, \subseteq)\), where:
 - \(L = 2^E \) (power set of \(E \), i.e. set of all subsets of \(E \))
 - Partial order \(\subseteq \) is set inclusion
 - \(S_1 \subseteq S_2 \iff S_1 \subseteq S_2 \)

AE: The Lattice

- Consider set of expressions \(\{x*z, x+y, y-z\} \)
- Denote \(e = x*z, f = x+y, g = y-z \)
- Partial order: \(\subseteq \)
- Set \(E \) is finite implies lattice has finite height
- Meet operator: \(\cap \)
 - (set intersection)
- Top element: \(\{e, f, g\} \)
- (set of all expressions)
- Larger sets of available variables = more precise analysis
- No available expressions = least precise
AE: Dataflow Equations

- Equations:
 \[\text{out}[I] = F_b(\text{in}[I]), \text{ for all } B \]
 \[\text{in}[B] = \bigcap \{ \text{out}[B'] | B' \preceq \text{pred}(B) \}, \text{ for all } B \]
 \[\text{in}[B_0] = X_0 \]

- Meaning of intersection meet operator:
 "An expression is available at entry of block B if it is available at exit of all predecessor nodes"

AE: Transfer Functions

- Define transfer functions for instructions
- General form of transfer functions:
 \[F_0(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \]

 where:
 \[\text{kill}[I] = \text{expressions "killed" by } I \]
 \[\text{gen}[I] = \text{new expressions "generated" by } I \]

- Note: this kind of transfer function is typical for many dataflow analyses!
- Meaning of transfer functions: "Expressions available after instruction I include: 1) expressions available before I, not killed by I, and 2) expressions generated by I"

AE: Transfer Functions

- Define kill/gen for each type of instruction
 - if \(I = x \to y \): \(\text{gen}[I] = \{x \to y \} \)
 - if \(I = \text{OP} z : \text{gen}[I] = \{ \text{OP} z \} \)
 - if \(I = \text{addr y} : \text{gen}[I] = \{ y \} \)
 - if \(I = \text{if}(x) : \text{gen}[I] = \{ x \} \)
 - if \(I = \text{return} x : \text{gen}[I] = \{ x \} \)

- Transfer functions \(F_0(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \)

- ... how about \(x = x \text{ OP } y \)?

Available Expressions: Summary

- Lattice: \((2^E, \subseteq)\); has finite height
- Meet is set intersection, top element is \(E \)
- Is a forward dataflow analysis
- Dataflow equations:
 \[\text{out}[I] = F_b(\text{in}[I]), \text{ for all } B \]
 \[\text{in}[B] = \bigcap \{ \text{out}[B'] | B' \preceq \text{pred}(B) \}, \text{ for all } B \]
 \[\text{in}[B_0] = X_0 \]

- Transfer functions: \(F_0(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \)
 - are monotonic and distributive
 - Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution

Problem 3: Reaching Definitions

- Compute reaching definitions for each program point
- Reaching definition = definition of a variable whose assigned value may be observed at current program point in some execution of the program
- Dataflow information: sets of reaching definitions
- Example: definitions \((d_2, d_7)\) may reach program point \(p \)
- Is a forward analysis
- Let \(D = \) set of all definitions (assignments) in the program
- Lattice \((D, \subseteq)\), where:
 - \(L = 2^D \) (power set of \(D \))
 - Partial order \(\subseteq \) is set inclusion: \(\subseteq \)

RD: The Lattice

- Consider set of expressions = \((d_1, d_2, d_3)\)
 where \(d_1: x = y \), \(d_2: x = x + 1 \), \(d_3: z = y \cdot x \)

- Partial order: \(\subseteq \)
- Set \(D \) is finite implies lattice has finite height
- Meet operator: \(\cup \) (set union)
- Top element: \(\emptyset \) (empty set)
- Smaller sets of reaching definitions = more precise analysis
- All definitions may reach current point = least precise
RD: Dataflow Equations

- Equations:
 \[\text{out}[I] = F_d(\text{in}[I]), \text{ for all } B \]
 \[\text{in}[B] = \cup \{\text{out}(B') \mid B'\text{ pred}(B)\}, \text{ for all } B \]
 \[\text{in}[B_0] = X_0 \]

- Meaning of intersection meet operator:
 “A definition reaches the entry of block B if it reaches the exit of at least one of its predecessor nodes”

RD: Transfer Functions

- Define kill/gen for each type of instruction
 - If I is a definition d:
 \[\text{gen}[I] = \{d\} \quad \text{kill}[I] = \{d' \mid d' \text{ defines } x\} \]
 - If I is not a definition:
 \[\text{gen}[I] = \{\} \quad \text{kill}[I] = \{\} \]

- Transfer functions \(F_d(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \)
- They are monotonic and distributive
 - For each \(F_d \), \(\text{kill}[I] \) and \(\text{gen}[I] \) are constants: they don’t depend on input information \(X \)

RD: Transfer Functions

- Define kill/gen for instructions
- General form of transfer functions:
 \[F_d(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \]
 where:
 \[\text{kill}[I] = \text{definitions “killed” by } I \]
 \[\text{gen}[I] = \text{definitions “generated” by } I \]

- Meaning of transfer functions: “Reaching definitions after instruction I include: 1) reaching definitions before I, not killed by I, and 2) reaching definitions generated by I”

Reaching Definitions: Summary

- Lattice: \((2^S, \supseteq) \); has finite height
- Meet is set union, top element is \(\emptyset \)
- Is a forward dataflow analysis
- Dataflow equations:
 \[\text{out}(I) = F_d(\text{in}(I)), \text{ for all } B \]
 \[\text{in}(B) = \cup \{\text{out}(B') \mid B'\text{ pred}(B)\}, \text{ for all } B \]
 \[\text{in}[B_0] = X_0 \]
- Transfer functions:
 \[F_d(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \]
 - are monotonic and distributive
- Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution

Implementation

- Lattices in these analyses = power sets
- Information in these analyses = subsets of a set
- How to implement subsets?
 1. Set implementation
 - Data structure with as many elements as the subset has
 - Usually list implementation
 2. Bitvectors:
 - Use a bit for each element in the overall set
 - Bit for element \(x \) is: 1 if \(x \) is in subset, 0 otherwise
 - Example: \(S = \{a,b,c\} \), use 3 bits
 - Subset \(\{a,c\} \) is 101, subset \(\{b\} \) is 010, etc.

Implementation Tradeoffs

- Advantages of bitvectors:
 - Efficient implementation of set union/intersection:
 set union is bitwise “or” of bitvectors
 set intersection is bitwise “and” of bitvectors
 - Drawback: inefficient for subsets with few elements
- Advantage of list implementation:
 - Efficient for sparse representation
 - Drawback: inefficient for set union or intersection
- In general, bitvectors work well if the size of the (original) set is linear in the program size
Problem 4: Constant Folding

- Compute constant variables at each program point
- Constant variable = variable having a constant value on all program executions
- Dataflow information: sets of constant values
- Example: \(x=2, y=3 \) at program point \(p \)
- L = set of integer constants
- Use a lattice over the set \(L \times N \)
- Construct the lattice starting from a lattice for \(N \)
- Problem: \((N, \leq) \) is not a complete lattice!
 ... Why?

Constant Folding Lattice

- Second try: lattice \((N \cup \{T, \bot\}, \leq) \)
 - Where \(\bot \leq n \) for all \(n \in N \)
 - And \(n \leq T \) for all \(n \in N \)
 - Is complete!
- Problem:
 - Is incorrect for constant folding
 - Meet of two constants \(c \land d \) is \(\min(c,d) \)
 - Meet of different constants should be \(\bot \)
- Another problem: has infinite height ...
CF: Transfer Functions

- Transfer function for instruction I:
 \[F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \]
- Here \(\text{gen}[I] \) is not constant, it depends on \(X \)
- However transfer functions are monotonic (easy to prove)
- ... but are transfer functions distributive?

CF: Distributivity

- Example:
 \[
 \{x=2, y=3, z=\top\} \quad
 \{x=3, y=2, z=\top\} \\
 \{x\top, y\top, z=\top\} \\
 \{x\top, y\top, z=\bot\} \\
 \{x=2, y=3, z=?\} \\
 \{x=3, y=2, z=?\} \\
 \{x=2, y=3, z=?\} \\
 \{x=3, y=2, z=?\}
 \]
- At join point, apply meet operator
- Then use transfer function for \(z=x+y \)

CF: Distributivity

- Example:
 \[
 \{x=2, y=3, z=\top\} \quad
 \{x=3, y=2, z=\top\} \\
 \{x=\bot, y=\bot, z=\bot\} \\
 \{x=\bot, y=\bot, z=\top\} \\
 \{x=\bot, y=\bot, z=\bot\} \\
 \{x=2, y=3, z=?\} \\
 \{x=3, y=2, z=?\} \\
 \{x=\bot, y=\bot, z=?\}
 \]
- Dataflow result (MFP) at the end: \(\{x=\bot, y=\bot, z=\bot\} \)
- MOP solution at the end: \(\{x=\bot, y=\bot, z=5\} \)

Classification of Analyses

- **Forward analyses**: information flows from
 - CFG entry block to CFG exit block
 - Input of each block to its output
 - Output of each block to input of its successor blocks
- **Examples**: available expressions, reaching definitions, constant folding
- **Backward analyses**: information flows from
 - CFG exit block to entry block
 - Output of each block to its input
 - Input of each block to output of its predecessor blocks
- **Examples**: live variable analysis

Another Classification

- "may" analyses:
 - Information describes a property that \textbf{MAY} hold in \textbf{SOME} executions of the program
 - Usually: \(\cap = \cup, \top = \emptyset \)
 - Hence, initialize info to empty sets
- **Examples**: live variable analysis, reaching definitions
- "must" analyses:
 - Information describes a property that \textbf{MUST} hold in \textbf{ALL} executions of the program
 - Usually: \(\cap = \cap, \top = \mathbb{N} \)
 - Hence, initialize info to the whole set
- **Examples**: available expressions