CS412/413

Introduction to Compilers

Lecture 22: Dataflow Analysis Frameworks

Radu Rugina

Live Variable Analysis

What are the live
variables at each
program point?

Method:

1. Define sets of
live variables

1. Build constraints

2. Solve constraints

14 Mar 03

CS 412/413 Spring 2003

Introduction to Compilers

Derive Constraints

Derive Constraints

Constraints for each L
instruction: tz
3
in[I]=(out[I]-def[I]) t"
U use[I] LZ
L7
Constraints for Lg
control flow: L
LIU
outfB] = u in[B] Ly
B’ Osucc(B) le
CS 412/413 Spring 2003 Introduction to Compilers
Initialization
L=Lu{c L=
L=Lul, '[z:{}
Ly= (L00) U v} oy
L= (AU Coh
Ls= Lsu {d} L::{}
L=L UL Co
L= (LoD U 2y L-g
Lg= Lo
=
L= L{z} I:ﬂ -0
Lo=L; L, =0
Ly = (Lp{zh) v {xp Lz -0

CS 412/413 Spring 2003

Introduction to Compilers

CS 412/413 Spring 2003

Introduction to Compilers

L=Lu{c L
L=LuUlLy, L
L= (L0 U Ay} b
L= (DU @ N
L= LU {d} LZ
=L Ul N
L= (Le{x}) v {y,z} L
=Ly L
L= Ly{z} Lo
Lo=1L L
L= (Lpr{z) U L,
CS 412/413 Spring 2003 Introduction to Compilers
Iteration 1
L=Lu{cd Ly={x,y,z,c,d}
L=Luly, Lp={oyzdy
L= LD U ks jyj}d}
L= (O U (23 L
S L={y,2}
L=L UL oty
I[7i (LLe-{x}) v,z L=
]
L= L{z} I:ﬂ :{{}}
L™ Ly Ly ={x¢
Ly = (Lp{zh) v {xr Ly =0

Iteration 2

Fixed-point!

L=Lu{c} Li={xy.z,c,d}
L=Lul, L ={xy,zc,d}
L= (L0 v {y} Ezéy;’c,g;
={x,z,¢,

L= (L-{yh v {z} L —txyzcd)
Ls=Lgu {d} B
L=1L, UL Le={xy,z,c.d}
= (et U 2 b -bad

= (L{xHudyz
L= LLe ! Lg={xy,c,d}
8 9

- Lo ={xy,c,d}
::9 1'—&0 @ Lo ={xy,z,c,d}
L= (L) U 0 b =00
" ? Lp={}

CS 412/413 Spring 2003 Introduction to Compilers 8

L =Lu{c} Li={xy,z,c,d}
L=Luly, L, ={x,y,z,c,d}
L= (L-{xh) U {y} ETAM,S;
={x,z,¢,
= (L.~
t" (L i {2); @ Ls={xy.z,c,d}
= V]
L= L5 U L Le ={xy,z,c,d}
|_e (7 { ;) {y,2} L, ={y,z,c,d}
= -Xr) U v4
L7 = LL8 v Lg ={xy,c,d}
8 9
= Ly ={xy,c,d}
II:9 _:Llio {Z} Lo ={xy,z,c,d}
L= L)L 0 Lu=b3
= -1Z)) U {X
. " Lp={}
CS 412/413 Spring 2003 Introduction to Compilers 7
Final Result
Li={xy,z,c,d}
L ={xy,z,c,d}
L ={y,z,c,d}
x live here ! L, ={xz,c,d}
Ls={x,y,z,c,d}
Le={x,y,z,c,d}
L ={y,z,c,d}
Final result: sets Lsiix,y,c,ji
of live variables at t‘?‘_ {"XYCZ 7
each program point 10 =XV ZG
Z=X Ly ={x}
Lp={}
CS 412/413 Spring 2003 Introduction to Compilers 9

Characterize All Executions

Ly={xy,z,c,d}
L, ={x,y,z,c,d}
Ly ={y,z,c,d}
L, ={xz,cd}
Ls ={x,y,z,c,d}
Ls ={x,y,z,c,d}
L, ={y,z,c,d}
Lg={xy,c,d}
Lo ={xy,c,d}
Ly ={x,y,z,c,d}
Ly ={x}

Lo ={}

The analysis detects
that there is an
execution which uses
the value x = y+1

CS 412/413 Spring 2003 Introduction to Compilers 10

Generalization

e Live variable analysis and detection of available
copies are similar:
— Define some information that they need to compute
— Build constraints for the information
— Solve constraints iteratively:

« The information always “increases” during iteration
« Eventually, it reaches a fixed point.

¢ We would like a general framework
— Framework applicable to many other analyses

— Live variable/copy propagation = instances of the
framework

CS 412/413 Spring 2003 Introduction to Compilers 1

Dataflow Analysis Framework

o Dataflow analysis = a common framework for

many compiler analyses
— Computes some information at each program point

— The computed information characterizes all possible
executions of the program

¢ Basic methodology:

— Describe information about the program using an
algebraic structure called lattice

— Build constraints which show how instructions and
control flow modify the information in the lattice

— Iteratively solve constraints

CS 412/413 Spring 2003 Introduction to Compilers 12

Lattices and Partial Orders

o Lattice definition uses the concept of
partial order relation

o A partial order (P,=) consists of:

—AsetP

— A partial order relation = which is:
1. Reflexive X E X
2. Anti-symmetric XZy,ycXx = X=Y
3. Transitive: XCYy,YyCz = Xxcz

o Called “partial order” because not all elements are
comparable

CS 412/413 Spring 2003 Introduction to Compilers 13

Lattices and Lower/Upper Bounds

o Lattice definition uses the concept of
lower and upper bounds

o If (P,C) is a partial order and S < P, then:
1. xeP is a lower bound of Sif x =y, for all yeS
2. xeP is an upper bound of S if y = x, for all yeS

e There may be multiple lower and upper bounds of
the same set S

CS 412/413 Spring 2003 Introduction to Compilers 14

LUB and GLB

* Define least upper bounds (LUB) and greatest
lower bounds (GLB)
o If (P,=) is a partial order and S < P, then:
1. xePis GLB of S if:
a) x is an lower bound of S
b) y c x, for any lower bound y of S

2. xePis a LUB of S if:
a) x is an upper bound of S
b) x £y, for any upper bound y of S

e ... are GLB and LUB unique?

CS 412/413 Spring 2003 Introduction to Compilers 15

Lattices
e A pair (L,£) is a lattice if:
1. (L,©) is a partial order
2. Any finite subset S < L has a LUB and a GLB
¢ Can define two operators in lattices:
1. Meet operator: x 1y = GLB({x,y})
2. Join operator: x Uy = LUB({x,y})

e Meet and join are well-defined for lattices

CS 412/413 Spring 2003 Introduction to Compilers 16

Complete Lattices

A pair (L,=) is a complete lattice if:
1. (L,=) is a partial order
2. Any subset S < L has a LUB and a GLB

¢ Can define meet and join operators

Can also define two special elements:
1. Bottom element: 1 = GLB(L)
2. Top element: T = LUB(L)

All finite lattices are complete

CS 412/413 Spring 2003 Introduction to Compilers 17

Example Lattice

e Consider S = {a,b,c} and its power set P =

{0, {a}, {b}, {c}, {a,b}, {b,c}, {a,c} {a,b,c}}

o Define partial order as set inclusion: X<Y

— Reflexive Xcy
— Anti-symmetric X<Y,Yc X = X=Y
— Transitive XcY,YcZ = Xc2Z

¢ Also, for any two elements of P, there is a set
which includes both and another set which is
included in both

o Therefore (P,<) is a (complete) lattice

CS 412/413 Spring 2003 Introduction to Compilers 18

Hasse Diagrams

e Hasse diagram = {a,b,c}
graphical
representation of a {a,b} {ac} {bc}
lattice where x is
below y when x = y {a} {b}><{(l}
andx #y ~_ |

0

CS 412/413 Spring 2003 Introduction to Compilers 19

Power Set Lattice

Partial order: =
(set inclusion)

{a,b,c}

e Meet: N
(set intersection) / | \
. Join: U {ab}y {ack {bc}
(set union) {l }><{b}><{ |}
a C
e Top element: {a,b,c}
(whole set) \ | /
O

¢ Bottom element: O
(empty set)

CS 412/413 Spring 2003 Introduction to Compilers 20

Reversed Lattice

o Partial order: 2
(set inclusion)

g
e Meet: U
(set union) / | \
e Join: N {a} {5, {c}

(set intersection) |

> > |
o Top element: [{ab} A{ack <bc}

(empty set) |

o Bottom element: {a,b,c} {ab,c}
(whole set)
CS 412/413 Spring 2003 Introduction to Compilers 2

Relation To Dataflow Analysis

¢ Information computed by live variable analysis
and available copies can be expressed as
elements of lattices

Live variables: if V is the set of all variables in
the program and P the power set of V, then:

- (P,<) is a lattice
- sets of live variables are elements of this lattice

CS 412/413 Spring 2003 Introduction to Compilers 22

Relation To Analysis of Programs

o Copy Propagation:
-V is the set of all variables in the program

-V x V the cartesian product representing all
possible copy instructions

- P the power set of V x V
e Then:
- (P,<) is a lattice

- sets of available copies are lattice elements

CS 412/413 Spring 2003 Introduction to Compilers 23

More About Lattices

¢ In a lattice (L, =), the following are equivalent:

l.xey
2.Xxny =X
3.xuy=y

¢ Note: meet and join operations were defined
using the partial order relation

CS 412/413 Spring 2003 Introduction to Compilers 24

Proof

e Prove that x = y implies x My = x:
—x is a lower bound of {x,y}
— All lower bounds of {x,y} are less than x,y
—In particular, they are less than x

e Prove thatx My = ximpliesx c y :
—x is a lower bound of {x,y}
—X is less than x and y
—In particular, x is less than y

CS 412/413 Spring 2003 Introduction to Compilers 25

Proof

e Prove thatx = y impliesx Ly = y:
—y is an upper bound of {x,y}
— All upper bounds of {x,y} greater than x,y
—In particular, they are greater than y

e Prove thatx LIy =y impliesx C y :
—y is a upper bound of {x,y}
—vy is greater than x and y
—In particular, y is greater than x

CS 412/413 Spring 2003 Introduction to Compilers 26

Properties of Meet and Join

¢ The meet and join operators are:

1. Associative xny)nz=xn(ynz)
2. Commutative Xy =ynx
3. Idempotent: X X=X

e Property: If “r1” is an associative, commutative, and
idempotent operator, then the relation “=" defined
as x C y iff x My = x is a partial order

¢ Above property provides an alternative definition of
a partial orders and lattices starting from the meet
(join) operator

CS 412/413 Spring 2003 Introduction to Compilers 27

Using Lattices

¢ Assume information we want to compute in a
program is expressed using a lattice L

¢ To compute the information at each program
point we need to:

— Determine how each instruction in the program
changes the information in the lattice

— Determine how lattice information changes at
join/split points in the control flow

CS 412/413 Spring 2003 Introduction to Compilers 28

Transfer Functions

Dataflow analysis defines a transfer function
F: L - L for each instruction in the program

o Describes how the instruction modifies the
information in the lattice

e Consider in[I] is information before I, and out[I] is
information after I

e Forward analysis: out[I] = F(in[1])
e Backward analysis: in[I] = F(out[I])

CS 412/413 Spring 2003 Introduction to Compilers 29

Basic Blocks

¢ Can extend the concept of transfer function
to basic blocks using function composition

e Consider:

— Basic block B consists of instructions (I, ..., I)) with
transfer functions Fy, ..., F,

— in[B] is information before B
— out[B] is information after B

e Forward analysis: out[B] = F.(...(F,(in[B])))
Backward analysis: in[I] = F,(... (F,(out[i])))

CS 412/413 Spring 2003 Introduction to Compilers 30

Split/Join Points

o Dataflow analysis uses meet/join operations at split/join

points in the control flow

e Consider in[B] is lattice information at beginning of
block B and out[B] is lattice information at end of B

e Forward analysis: in[B] = 'l {out[B'] | B'Upred(B)}
e Backward analysis: out[B] = 1 {in[B'] | B'[succ(B)}

¢ Can alternatively use join operation LI (equivalent to
using the meet operation 1 in the reversed lattice)

CS 412/413 Spring 2003 Introduction to Compilers

31

