CS412/413

Introduction to Compilers
Radu Rugina

Lecture 21: Liveness and Copy Propagation
12 Mar 03

Control Flow Graphs

¢ Control Flow Graph (CFG) = graph representation
of computation and control flow in the program
— framework to statically analyze program control-flow

e In a CFG:
— Nodes are basic blocks; they represent computation
— Edges characterize control flow between basic blocks

¢ Can build the CFG representation either from the
high IR or from the low IR

CS 412/413 Spring 2003 Introduction to Compilers 2

Build CFG from High IR

while (c) {
X=y+1;
y=2%*gz
if (d) x=y+z;
z=1;

z=X;

CS 412/413 Spring 2003 Introduction to Compilers 3

Build CFG from Low IR

label L1
jump c L2

label L1

fjump c L2

X=y+1; X=y+1;
y=2*z y=2%z

fjump d L3 :> ﬁump‘d L3
X = y+z; —
=y+
label L3
z=1; label L3

jump L1 z=1;
label L2 jump L1
z=X;

CS 412/413 Spring 2003 Introduction to Compilers 4

Using CFGs

o Next: use CFG representation to statically
extract information about the program
— Reason at compile-time

— About the run-time values of variables and
expressions in all program executions

o Extracted information example: live variables

o Idea:
— Define program points in the CFG

— Reason statically about how the information flows
between these program points

CS 412/413 Spring 2003 Introduction to Compilers 5

Program Points

e Two program points for each instruction:
— There is a program point before each instruction
— There is a program point after each instruction

Point before ———— o
X =y+1
Point after —————

e In a basic block:

— Program point after an instruction = program point
before the successor instruction

CS 412/413 Spring 2003 Introduction to Compilers 6

Program Points: Example

e Multiple successor blocks .
means that point at the X = y+1
end of a block has multiple .
successor program points y =2%z

L]

¢ Depending on the if (d)

execution, control flows .

from a program point to

one of its successors o

X =y+z
L

Also multiple predecessors

How does information
propagate between
program points?

CS 412/413 Spring 2003 Introduction to Compilers 7

Flow of Extracted Information

¢ Question 1: how does information X = y+1

flow between the program points .
before and after an instruction? y =2%z

L]

o Question 2: how does information if (d)
flow between successor and °
predecessor basic blocks? .

X =Yy+z

L]

e ... in other words:

Q1: what is the effect of instructions? o
Q2: what is the effect of control flow? z=1

CS 412/413 Spring 2003 Introduction to Compilers 8

Using CFGs

e To extract information: reason about how it
propagates between program points

e Rest of this lecture: how to use CFGs to

compute information at each program point for:

— Live variable analysis, which computes live variables
are live at each program point

— Copy propagation analysis, which computes the
variable copies available at each program point

CS 412/413 Spring 2003 Introduction to Compilers 9

Live Variable Analysis

¢ Computes live variables at each program point

— I.e. variables holding values which may be used later
(in some execution of the program)

e For an instruction I, consider:
— in[I] = live variables at program point before I
— out[I] = live variables at program point after I

e For a basic block B, consider:
— in[B] = live variables at beginning of B
— out[B] = live variables at end of B

e If I = first instruction in B, then in[B] = in[I]
e If I' = last instruction in B, then out[B] = out[I']

CS 412/413 Spring 2003 Introduction to Compilers 10

How to Compute Liveness?

* Answer question 1: for each in[I]
instruction I, what is the relation I
between in[I] and out[I] ? out[T]

¢ Answer question 2: for each
basic block B with successor
blocks B, ..., B,, what is the
relation between out[B] and
in[B,], ..., in[B.]?

CS 412/413 Spring 2003 Introduction to Compilers 1

Part 1: Analyze Instructions

¢ Question: what is the relation between in[1]

sets of live variables before and after 1
an instruction? out(I]
e Examples:

in[I] = {y,z} in[I] = {y,zt} in[I] = {x,t}
X =y+z X =y+z X = X+1
out[I] = {z} out[I] = {x,t} out[I] = {x,t}

e ... is there a general rule?

CS 412/413 Spring 2003 Introduction to Compilers 12

Analyze Instructions

e Yes: knowing variables live after I,

can compute variables live before I: in[T]
— All variables live after I are also live I
before I, unless I defines (writes) them out[I]

— All variables that I uses (reads) are also
live before instruction I
e Mathematically:
in[I] = (out[I] — def[I]) U use[I]
where:
— def[I] = variables defined (written) by instruction I
— use[I] = variables used (read) by instruction I

CS 412/413 Spring 2003 Introduction to Compilers 13

Computing Use/Def

e Compute use[I] and def[I] for each instruction I:
iflisx=yOPz: use[l] ={y,z} def[I] ={x}

iflisx=0Py : use[l] ={y} def[I] = {x}
iflisx=y o use[I] = {y} def[I] = {x}
iflisx=addry: use[l]={} def[I] = {x}
if Tis if (x) o use[I] = {x} deflI] = {3
if I is return x use[I] = {x} def[I] = {}

iF1iS X = f(yer Vo) USELT] = {Yy,ee Yo
def[I] = {x}

(For now, ignore load and store instructions)

CS 412/413 Spring 2003 Introduction to Compilers

Example

¢ Example: block B with three
instructions 11, 12, I3: Block B

Livel =in[B] = in[I1] Livel
Live2 = out[I1] = in[I2] I1| x=y+1
Live3 = out[I2] = in[I3] Live2
Live4 = out[I3] = out[B]

2| y=2%z
o Relation between Live sets: Live3
Livel = (Live2-{x}) U {y} 3| if(d)
Live2 = (Live3-{y}) u {z} Live4
Live3 = (Live4-{}) u {d}
CS 412/413 Spring 2003 Introduction to Compilers 15

Backward Flow

¢ Relation: in[I]
in[I] = (out[I] — deflI]) U use[I] 1
out[I]

¢ The information flows backward!

e Instructions: can compute in[I] if we

I

know out[I] In[B]
X =y+1
e Basic blocks: information about live y =2%z
variables flows from out[B] to in[B] if (d)
out[B]

CS 412/413 Spring 2003 Introduction to Compilers

Part 2: Analyze Control Flow

» Question: for each basic block B
with successor blocks B, ..., B
what is the relation between
out[B] and in[B,], ..., in[B,]?

e Examples:

nr

B B
X,Y,Z X,YiZ

{xz}
B,

%) ‘ [‘ ‘ %) ‘ ‘ %)
B, B, B, B,

¢ What is the general rule?

CS 412/413 Spring 2003 Introduction to Compilers 17

Analyze Control Flow

e Rule: A variables is live at end of block B if it is
live at the beginning of one successor block

o Characterizes all possible program executions

e Mathematically:
out[B] = Y gcc(s)m[B]

¢ Again, information flows backward: from
successors B’ of B to basic block B

CS 412/413 Spring 2003 Introduction to Compilers

Constraint System

e Put parts together: start with CFG and derive a
system of constraints between live variable sets:

in[I] = (out[I]—def[I]) U use[I] for each instruction I
out[B] = gl (B)in[B'] for each basic block B
succ

¢ Solve constraints:
— Start with empty sets of live variables
— Iteratively apply constraints
— Stop when we reach a fixed point

CS 412/413 Spring 2003 Introduction to Compilers 19

Constraint Solving Algorithm

For all instructions in[I] = out[I] = O
Repeat
For each instruction I
in[I] = (out[I] — def[I]) U use[I]
For each basic block B
out[B] = E'Dsthc(B)in[Bl]

Until no change in live sets

CS 412/413 Spring 2003 Introduction to Compilers 20

Example

def = {x}, use = {y} | .
def = {y}, use = {z} ———|
def = {3, use = {d} ———|

def = {x}, use = {y,z}

def = {x}, use={} ———X— -
def = {z}, use={x}——
CS 412/413 Spring 2003 Introduction to Compilers 21

Copy Propagation
¢ Goal: determine copies available at each program point
« Information: set of copies <x=y> at each point

e For each instruction I:
— in[I] = copies available at program point before I
— out[I] = copies available at program point after I

For each basic block B:
— in[B] = copies available at beginning of B
— out[B] = copies available at end of B

e If I = first instruction in B, then in[B] = in[I]
If I' = last instruction in B, then out[B] = out[I']

CS 412/413 Spring 2003 Introduction to Compilers 22

Same Methodology
1. Express flow of information (i.e. available copies):
— For points before and after each instruction (in[I], out[I])

— For points at exit and entry of basic blocks (in[B], out[B])

2. Build constraint system using the relations between
available copies

3. Solve constraints to determine available copies at
each point in the program

CS 412/413 Spring 2003 Introduction to Compilers 23

Analyze Instructions

e Knowing in[I], can compute out[I]:

— Remove from in[I] all copies <u=v> if in[I]
variable u or v is written by I I
— Keep all other copies from in[I] out(T]

— If Iis of the form x=y, add it to out[I]

¢ Mathematically:
out[I] = (in[I] = kill[I]) U gen[I]
where:
— kill[I] = copies “killed” by instruction I
— gen[I] = copies “generated” by instruction I

CS 412/413 Spring 2003 Introduction to Compilers 24

Computing Kill/Gen
e Compute kill[I] and gen[I] for each instruction I:

iflisx=yOPz: gen[l] ={} Kill[I] = {u=v|u or v is x}
iflisx=0Py : gen[I]={} Kill[I] = {u=v|u or v is x}

iflisx=y 1 gen[I] = {x=y} kill[I] = {u=v|u or vis x}
iflisx =addry: gen[l] ={} Kill[I] = {u=v|u or v is x}
if Tis if (x) 1 gen[I] = {} kill[1] = {3

ifTisreturnx : gen[I] = {} kill[1] = {3
if Tis x = f(yy,..., o) ¢ gen[I] = {} Kill[I] = {u=v| uorvis x}

(again, ignore load and store instructions)

CS 412/413 Spring 2003 Introduction to Compilers 25

Forward Flow

e Relation: in[1]
out[I] = (in[I] = kill[I]) U gen[I] 1 ﬁ
out[I]

The information flows forward!

Instructions: can compute out[I] if

we know in[I] In[B]
X=y
¢ Basic blocks: information about y =2%z
available copies flows from in[B] to if (d)
out[B] out[B]
CS 412/413 Spring 2003 Introduction to Compilers 26

Analyze Control Flow

e Rule: A copy is available at end of block B if it is
live at the beginning of all predecessor blocks

o Characterizes all possible program executions

¢ Mathematically:
in[B] = o

pred|

(B)out[B 1

¢ Information flows forward: from predecessors B
of B to basic block B

CS 412/413 Spring 2003 Introduction to Compilers 27

Constraint System

e Build constraints: start with CFG and derive a system of
constraints between sets of available copies:

{out[l] = (in[I] = kill[I]) u gen[I] for each instruction I

in[Bl]= n out[B] for each basic block B
B’ [pred(B)

¢ Solve constraints:
— Start with empty sets of available copies
— Iteratively apply constraints
— Stop when we reach a fixed point

CS 412/413 Spring 2003 Introduction to Compilers 28

Example

¢ What are the available
copies at the end of
the program?

x=y?

z=t?

CS 412/413 Spring 2003 Introduction to Compilers 29

Summary

¢ Extracting information about live variables and
available copies is similar
— Define the required information
— Define information before/after instructions
— Define information at entry/exit of blocks
— Build constraints for instructions/control flow
— Solve constraints to get needed information

o ..is there a general framework?
— Yes: dataflow analysis!

CS 412/413 Spring 2003 Introduction to Compilers 30

