CS412/413

Introduction to Compilers
Radu Rugina

Lecture 16: Intermediate Representation
24 Feb 03

Record Subtyping

¢ Width Subtyping: types of inherited fields must
match in the subtype

nsm
A+ {al: Tl seer At Tm} <: {al: Tl yeer Apt Tn}

e Depth subtyping: corresponding immutable fields
may be subtypes; exact match not required
A+ T,<:T/ (0L
A-{ag Ty apT) <i{a;:Ty...au T}

CS 412/413 Spring 2003 Introduction to Compilers 2

Depth Subtyping

¢ Depth subtyping for objects:
— Mutable components must be type invariant
— Immutable components may be type covariant

e Immutable components:

— Methods (but Java is conservative)
— Constant fields: final in Java

CS 412/413 Spring 2003 Introduction to Compilers

Function Subtyping

¢ Function subtyping: T,-T, <: T, -T,’
e Consider function f of type T, - T,:

T 0T T T

CS 412/413 Spring 2003 Introduction to Compilers 4

Contravariance/Covariance

¢ Function argument types may be contravariant
e Function result types may be covariant

T <: Ty
T, <: T
T-T, <<T{ - T,

CS 412/413 Spring 2003 Introduction to Compilers

Java Array Subtyping

¢ Java has array type constructor: for any type T,
T[1isanarray of T's
¢ Java also has subtype rule:

T, <T,
Ti[1 <: T[]

e Is this rule safe?

CS 412/413 Spring 2003 Introduction to Compilers 6

Java Array Subtyping

e Example:

Elephant <: Animal

Animal [] x;

Elephant [1y;

X=Y;

x[0] = new Rhinoceros(); // oops!
¢ Covariant modification: unsound
¢ Java does run-time check!

CS 412/413 Spring 2003 Introduction to Compilers 7

Unification
e Some rules more problematic: if
e Rule: A |-- E : bool
Al-S,:T
Al-S,:T

Al-if(E)S,elseS,: T

e Problem: if S, has type T;, S, has type T,. Old check: T,
=T, . New check: need type T. How to unify T, , T, ?

e Occurs in Java: ?: operator

CS 412/413 Spring 2003 Introduction to Compilers 8

General Typing Derivation

AES:T, Ti<iT ARSET, To<iT
AFE:bool ARS:T AES,: T
A-if(E)S;elseS,: T

How to pick T ?

CS 412/413 Spring 2003 Introduction to Compilers 9

Unification

o Idea: unified type is least common ancestor in type
hierarchy (least upper bound)

o Partial order of types must be a lattice
if (b) new C5() else new C3() : 12

I LUB(C3, C5) =12
C1 3 Logic: 12 must be same as or a
A subtype of any type (e.g. I1)
2 C3 Cc4 that could be the type of both
| a value of type C3 and a value
Cc5 of type C5

What if no LUB?

CS 412/413 Spring 2003 Introduction to Compilers 10

Summary: Semantic Analysis

¢ Check errors not detected by lexical or syntax
analysis

e Scope errors:
— Variables not defined
— Multiple declarations

e Type errors:
— Assignment of values of different types

— Invocation of functions with different number of
parameters or parameters of incorrect type

— Incorrect use of return statements

CS 412/413 Spring 2003 Introduction to Compilers 11

Semantic Analysis

¢ Type checking
— Use type checking rules

— Static semantics = formal framework to specify type-
checking rules

e There are also control flow errors:

— Must verify that a break or continue statement is
always enclosed by a while (or for) statement

— Java: must verify that a break X statement is
enclosed by a for loop with label X

— Can easily check control-flow errors by recursively
traversing the AST

CS 412/413 Spring 2003 Introduction to Compilers 12

Where We Are

Source code
(character stream)

Lexical analysis

Token stream -y

Syntactic Analysis
Abstract syntax tree -

Semantic Analysis

Abstract syntax tree —————
+ symbol tables, types

Intermediate Code
I:> Generation

Intermediate Code

regular expressions

grammars

static semantics

CS 412/413 Spring 2003 Introduction to Compilers 13

Intermediate Code

¢ IR = Intermediate Representation

¢ Allows language-independent, machine-
independent optimizations and transformations

optimize Pentium
AST——1IR Java bytecode
Alpha
CS 412/413 Spring 2003 Introduction to Compilers 14

What Makes a Good IR?

e Easy to translate from AST

¢ Easy to translate to assembly

¢ Narrow interface: small number of node types
(instructions)

— Easy to optimize AST (>40 node types)
— Easy to retarget
IR (13 node types)

Pentium (>200 opcodes)

CS 412/413 Spring 2003 Introduction to Compilers 15

Multiple IRs

¢ Some optimizations require high-level structure
¢ Others more appropriate on low-level code

optimize Pentium
AST IR Java bytecode
Alpha
CS 412/413 Spring 2003 Introduction to Compilers 16

Multiple IRs

¢ Some optimizations require high-level structure
¢ Others more appropriate on low-level code
e Solution: use multiple IR stages

- . Pentium
optimize optimize
AST — HIR — LIR Java bytecode
Alpha

CS 412/413 Spring 2003 Introduction to Compilers 17

Machine Optimizations

¢ ... some other optimizations take advantage of
the features of the target machine

¢ Machine-specific optimizations

~—\optimize
«)
o o Pentium
optimize optimize
_—. optimize
()
AST — HIR — LIR Java bytecode

~— optimize
L)

Alpha

CS 412/413 Spring 2003 Introduction to Compilers 18

Next Lectures

¢ Next few lectures: intermediate representation
¢ Optimizations covered later

Multiple IRs
e Usually two IRs:

High-level IR Low-level IR
Language-independent Machine independent
(but closer to language) (but closer to machine)

C Pentium

Fortran % HIR — LIR Java bytecode
Pascal Alpha

CS 412/413 Spring 2003 Introduction to Compilers 20

Pentium
AST —HIR—LIR Java bytecode
Alpha
CS 412/413 Spring 2003 Introduction to Compilers 19
Multiple IRs

¢ Another benefit: a significant part of the
translation from high-level to low-level is

— Language-independent
— Machine-independent

C Pentium

Fortran % HIR — LIR Java bytecode
Pascal Alpha

CS 412/413 Spring 2003 Introduction to Compilers 21

High-Level IR

¢ High-level intermediate representation is
essentially the AST

— Must be expressive for all input languages

e Preserves high-level language constructs
— Structured control flow: if, while, for, switch, etc.
— variables, methods

¢ Allows high-level optimizations based on
properties of source language (e.g. inlining)

CS 412/413 Spring 2003 Introduction to Compilers 22

Low-Level IR

¢ Low-level representation is essentially an
abstract machine

¢ Has low-level constructs
— Unstructured jumps, instructions

¢ Allows optimizations specific to these constructs
(e.g. register allocation, branch prediction)

CS 412/413 Spring 2003 Introduction to Compilers 23

Low-Level IR

o Alternatives for low-level IR:
— Three-address code or quadruples (Dragon Book):
a=bOPc

— Tree representation (Tiger Book)

— Stack machine (like Java bytecode)
¢ Advantages:
— Three-address code: easier dataflow analysis

— Tree IR: easier instruction selection
— Stack machine: easier to generate

CS 412/413 Spring 2003 Introduction to Compilers 24

Three-Address Code

In this class: three-address code
a=bOPc

¢ Has at most three addresses (may have fewer)

¢ Also named quadruples because can be
represented as: (a, b, ¢, OP)

e Example:
a = (b+c)*(-e); tl=b+c
2=-e
a=tl*t2
CS 412/413 Spring 2003 Introduction to Compilers 25

Low IR Instructions

e Assignment instructions:

— Binary operations: a = b OP c
 Arithmetic, logic, comparisons

— Unary operation a = OP b
 Arithmetic, logic

— Copy instruction: a = b

— Load /store: a = *b, *a =b

— Other data movement instructions

CS 412/413 Spring 2003 Introduction to Compilers 26

Low IR Instructions (Ctd)

» Flow of control instructions:
— label L : label instruction
— jump L : Unconditional jump
— cjump a L : conditional jump

¢ Function call
- call f(ay, ..., a,)
-a=acllf(ay ..., a,)
— Is an extension to quads

e ... IR describes the Instruction Set of an
abstract machine

CS 412/413 Spring 2003 Introduction to Compilers 27

Temporary Variables

e The operands in the quadruples can be:
— Program variables
— Integer constants
— Temporary variables

e Temporary variables = new locations
— Use temporary variables to store intermediate values

CS 412/413 Spring 2003 Introduction to Compilers 28

Arithmetic / Logic Instructions

¢ Abstract machine supports a variety of different
operations

a=bOPc a=0Pb
¢ Arithmetic operations: ADD, SUB, DIV, MUL
¢ Logic operations: AND, OR, XOR

o Comparisons: EQ, NEQ, LE, LEQ, GE, GEQ
e Unary operations: MINUS, NEG

CS 412/413 Spring 2003 Introduction to Compilers 29

Data Movement

e Copy instruction: a=b
Load/store instructions:
a="*b *a=b

— Models a load/store machine
¢ Address-of instruction: a = &b
o Array accesses:

a = b[i] alil=b
e Field accesses:

a=b.f af=b

CS 412/413 Spring 2003 Introduction to Compilers 30

Branch Instructions

Label instruction:
label L

Unconditional jump: go to statement after label L
jump L

Conditional jump: test condition variable a; if
true, jump to label L

Call Instruction
e Supports function call statements
call f(ay, ..., ap)
¢ ... and function call assignments:
a = call f(ay, ..., a,)

¢ No explicit representation of argument passing,
stack frame setup, etc.

CS 412/413 Spring 2003 Introduction to Compilers 32

cjumpal
¢ Alternative: two conditional jumps:
tumpal fjumpal
CS 412/413 Spring 2003 Introduction to Compilers 31
Example
n=20
label test
n=0; 2=n<10
while (n < 10) { t3 = not t2
n=n+1 cjump t3 end
} label body
n=n+1
jump test
label end
CS 412/413 Spring 2003 Introduction to Compilers 33

Another Example

m=0
tl=c==
cjump t1 trueb
m = m+n
jump end
label trueb
t2=n*n
m=m+t2
label end

e
e

3
x>
3

Gl
I
3
te

(o)
&3
||i||
3
+
=

w2
3

CS 412/413 Spring 2003 Introduction to Compilers 34

How To Translate?
e May have nested language constructs
— Nested if and while statements

e Need an algorithmic way to translate

e Solution:
— Start from the AST representation
— Define translation for each node in the AST
— Recursively translate nodes in the AST

CS 412/413 Spring 2003 Introduction to Compilers 35

