CS412/413

Introduction to Compilers
Radu Rugina

Lecture 13 : Static Semantics
17 Feb 03

Static Semantics

Can describe the types used in a program
¢ How to describe type checking?

¢ Formal description: static semantics for the
programming language

Is to type-checking:

— As grammar is to syntax analysis

— As regular expression is to lexical analysis

e Static semantics defines types for legal ASTs
in the language

CS 412/413 Spring 2003 Introduction to Compilers 2

Type Judgments

o Static semantics = formal notation which
describes type judgments:

E:T
means “E is a well-typed expression of type T”

¢ Type judgment examples:

2:int 2% (3+4):int
true : bool “Hello” : string
CS 412/413 Spring 2003 Introduction to Compilers 3

Type Judgments for Statements

¢ Statements may be expressions (i.e. represent values)
o Use type judgments for statements:

if (b) then 2 else 3 : int
x =10 : bool
b =true,y =2:int

o For statements which are not expressions: use a special
unit type (empty type):
S :unit
means S is a well-typed statement with no result type”

CS 412/413 Spring 2003 Introduction to Compilers 4

Deriving a Judgment
e Consider the judgment:
if (b) then 2 else 3 : int

e What do we need to decide that this is a well-
typed expression of type int?

e b must be a bool (b: bool)
e 2 must be an int (2: int)
e 3 must be an int (3: int)

CS 412/413 Spring 2003 Introduction to Compilers 5

Type Judgments

e Type judgment notation: A E: T

means “In the context A the expression E is a well-
typed expression with the type T ”

¢ Type context is a set of type bindings id : T
(i.e. type context = symbol table)

b: bool, x: int = b : bool
b: bool, x: int - if (b) then 2 else x : int
=2+2:int

CS 412/413 Spring 2003 Introduction to Compilers 6

Deriving a Judgement

e To show:
b: bool, x: int = if (b) then 2 else x : int

¢ Need to show:

b: bool, x: int = b : bool
b: bool, x: int = 2 :int
b: bool, x: int = x : int

CS 412/413 Spring 2003 Introduction to Compilers 7

General Rule

e For any environment A, expression E,
statements S, and S,, the judgment

A if(E)thenS,elseS, : T
is true if:

A E : bool
AES T
AES:T

CS 412/413 Spring 2003 Introduction to Compilers 8

Inference Rules

Premises
A
~ N
A E:bool AFS;:T AFES:T
(if-rule)
A if (E)thenS;elseS,: T
—)
N
Conclusion
e Holds for any choice of E, Sy, S,, T
CS 412/413 Spring 2003 Introduction to Compilers 9

Why Inference Rules?

¢ Inference rules: compact, precise language for
specifying static semantics (can specify
languages in ~20 pages vs. 100’s of pages of
Java Language Specification)

¢ Inference rules correspond directly to recursive
AST traversal that implements them

¢ Type checking is attempt to prove type
judgments A = E : T true by walking backward
through rules

CS 412/413 Spring 2003 Introduction to Compilers 10

Meaning of Inference Rule

¢ Inference rule says:
given that antecedent judgments are true
— with some substitution for A, E;, E,
then, consequent judgment is true
— with a consistent substitution

At E:int é At é fnt

A E,:int

+) + .
A E +E:int ﬁ é int

CS 412/413 Spring 2003 Introduction to Compilers

Proof Tree

e Expression is well-typed if there exists a type
derivation for a type judgment
e Type derivation is a proof tree

e Example: if A1 = b: bool, x: int, then:

Al b:bool AlHF 2:int Al 3:int

Al = 1b: bool Al 2+3:int Al x:int
b: bool, x: int I if (!b) then 2+3 else x : int

CS 412/413 Spring 2003 Introduction to Compilers 12

More about Inference Rules
¢ No premises = axiom
A = true : bool

¢ A goal judgment may be proved in more than one way

A = E; : float A E; : float
A E,: float AFE,:int
A E +E,: float A= E, +E,: float

¢ No need to search for rules to apply -- they correspond
to nodes in the AST

CS 412/413 Spring 2003 Introduction to Compilers 13

While Statements
e Rule for while statements:

A E: bool
AES:T

A = while (E) S: unit

(while)

e Why use unit type for while statements?

CS 412/413 Spring 2003 Introduction to Compilers 14

If Statements

o If statement as an expression (e.g., in ML): its value is
the value of the branch that is executed

A E: bool
AES:T AES:T

A if (E) then S; else S, :

if-then-el
T (if-then-else)

e If no else clause, no value (why?)

———— (if-then)
A if (E) S: unit

CS 412/413 Spring 2003 Introduction to Compilers 15

Assignment Statements

d: TOA
AFE:T

m (variable-assign)

AFE:T
A E,:int

A E;:array[T]
—— (array-assign)

AFE[E]=E:T

CS 412/413 Spring 2003 Introduction to Compilers 16

Sequence Statements

e Rule: A sequence of statements is well-typed if
the first statement is well-typed, and the
remaining are well-typed too:

AFES T,
A (Sy; ...;S) : T,

At (S1;Sy; .58 : T,

(sequence)

¢ What about variable declarations ?

CS 412/413 Spring 2003 Introduction to Compilers 17

Declarations

= unit
/ifnoE
AFid:T[=E] : T,
Add: THE(Sy; ...;S) i T,

A (d:T[=E]LS;; ...;S) : Ty

(declaration)

e Declarations add entries to the environment
(in the symbol table)

CS 412/413 Spring 2003 Introduction to Compilers 18

Function Calls

o If expression E is a function value, it has a type
T xTx. . xT, - T,

e T, are argument types; T, is return type
e How to type-check function call E(E;,...,E,)?

A E: TxTox. . xT,-T,
A Ei : '|'i (i01..n)

A E(E,..E): T,

(function-call)

CS 412/413 Spring 2003 Introduction to Compilers 19

Function Declarations

e Consider a function declaration of the form
T, fun (Ty ay,.., T, a,) {returnE; }

¢ Type of function body S must match declared
return type of function, i.e. E: T,

e ... but in what type context?

CS 412/413 Spring 2003 Introduction to Compilers 20

Add Arguments to Environment!

e Let A be the context surrounding the function
declaration. Function declaration:

T, fun (T, ay,..., T,a,) {retunE; }
is well-formed if

Aap:iTy,., a:T,HE:T,

e ..what about recursion?
Need: fun: T xT,x..xT,-T, O A

CS 412/413 Spring 2003 Introduction to Compilers 21

Recursive Function Example

e Factorial:

int fact(int x) {
if (x==0) return 1;
else return x * fact(x - 1);

¥

e Prove: A = x * fact(x-1) : int
Where: A = { fact: int—int, x : int }

CS 412/413 Spring 2003 Introduction to Compilers 22

Mutual Recursion

e Example:
int f(int x) { return g(x) + 1; }
int g(int x) {return f(x) - 1; }

¢ Need environment containing at least
frint - int, g:int - int
when checking both f and g

e Two-pass approach:

— Scan top level of AST picking up all function signatures
and creating an environment binding all global identifiers

— Type-check each function individually using this global
environment

CS 412/413 Spring 2003 Introduction to Compilers 23

How to Check Return?

AHE:T
(returnl)

A F return E : unit

¢ A return statement produces no value for its

containing context to use

¢ Does not return control to containing context

e Suppose we use type unit...
e ...then how to make sure the return type of the

current function is T ?

CS 412/413 Spring 2003 Introduction to Compilers 24

Put Return in the Symbol Table

e Add a special entry { return_fun : T } when we start
checking the function “fun”, look up this entry when we
hit a return statement.

e Tocheck T, fun (T, ay,..., T,a,) {returnS; }in
environment A, need to check:

Aa T, ,., a

, n

1T, return_fun: T, =S T,

AFE:T return_fun: TOA
(return)

A = return E : unit

CS 412/413 Spring 2003 Introduction to Compilers 25

Static Semantics Summary

e Static semantics = formal specification of type-
checking rules

¢ Concise form of static semantics: typing rules
expressed as inference rules

¢ Expression and statements are well-formed (or

well-typed) if a typing derivation (proof tree)
can be constructed using the inference rules

CS 412/413 Spring 2003 Introduction to Compilers 26

